摘要:
Disclosed is semiconductor structure with an insulator layer on a semiconductor substrate and a device layer is on the insulator layer. The substrate is doped with a relatively low dose of a dopant having a given conductivity type such that it has a relatively high resistivity. Additionally, a portion of the semiconductor substrate immediately adjacent to the insulator layer can be doped with a slightly higher dose of the same dopant, a different dopant having the same conductivity type or a combination thereof. Optionally, micro-cavities are created within this same portion so as to balance out any increase in conductivity due to increased doping with a corresponding increase in resistivity. Increasing the dopant concentration at the semiconductor substrate-insulator layer interface raises the threshold voltage (Vt) of any resulting parasitic capacitors and, thereby reduces harmonic behavior. Also disclosed herein are embodiments of a method for forming such a semiconductor structure.
摘要:
A method, integrated circuit and design structure includes a silicon substrate layer having trench structures and an ion impurity implant. An insulator layer is positioned on and contacts the silicon substrate layer. The insulator layer fills the trench structures. A circuitry layer is positioned on and contacts the buried insulator layer. The circuitry layer comprises groups of active circuits separated by passive structures. The trench structures are positioned between the groups of active circuits when the integrated circuit structure is viewed from the top view. Thus, the trench structures are below the passive structures and are not below the groups of circuits when the integrated circuit structure is viewed from the top view.
摘要:
A method, integrated circuit and design structure includes a silicon substrate layer having trench structures and an ion impurity implant. An insulator layer is positioned on and contacts the silicon substrate layer. The insulator layer fills the trench structures. A circuitry layer is positioned on and contacts the buried insulator layer. The circuitry layer comprises groups of active circuits separated by passive structures. The trench structures are positioned between the groups of active circuits when the integrated circuit structure is viewed from the top view. Thus, the trench structures are below the passive structures and are not below the groups of circuits when the integrated circuit structure is viewed from the top view.
摘要:
Disclosed is semiconductor structure with an insulator layer on a semiconductor substrate and a device layer is on the insulator layer. The substrate is doped with a relatively low dose of a dopant having a given conductivity type such that it has a relatively high resistivity. Additionally, a portion of the semiconductor substrate immediately adjacent to the insulator layer can be doped with a slightly higher dose of the same dopant, a different dopant having the same conductivity type or a combination thereof. Optionally, micro-cavities are created within this same portion so as to balance out any increase in conductivity with a corresponding increase in resistivity. Increasing the dopant concentration at the semiconductor substrate-insulator layer interface raises the threshold voltage (Vt) of any resulting parasitic capacitors and, thereby reduces harmonic behavior. Also disclosed herein are embodiments of a method and a design structure for such a semiconductor structure.
摘要:
Disclosed is semiconductor structure with an insulator layer on a semiconductor substrate and a device layer is on the insulator layer. The substrate is doped with a relatively low dose of a dopant having a given conductivity type such that it has a relatively high resistivity. Additionally, a portion of the semiconductor substrate immediately adjacent to the insulator layer can be doped with a slightly higher dose of the same dopant, a different dopant having the same conductivity type or a combination thereof. Optionally, micro-cavities are created within this same portion so as to balance out any increase in conductivity due to increased doping with a corresponding increase in resistivity. Increasing the dopant concentration at the semiconductor substrate-insulator layer interface raises the threshold voltage (Vt) of any resulting parasitic capacitors and, thereby reduces harmonic behavior. Also disclosed herein are embodiments of a method for forming such a semiconductor structure.
摘要:
Disclosed is semiconductor structure with an insulator layer on a semiconductor substrate and a device layer is on the insulator layer. The substrate is doped with a relatively low dose of a dopant having a given conductivity type such that it has a relatively high resistivity. Additionally, a portion of the semiconductor substrate immediately adjacent to the insulator layer can be doped with a slightly higher dose of the same dopant, a different dopant having the same conductivity type or a combination thereof. Optionally, micro-cavities are created within this same portion so as to balance out any increase in conductivity with a corresponding increase in resistivity. Increasing the dopant concentration at the semiconductor substrate-insulator layer interface raises the threshold voltage (Vt) of any resulting parasitic capacitors and, thereby reduces harmonic behavior. Also disclosed herein are embodiments of a method and a design structure for such a semiconductor structure.
摘要:
A non-linear kerf monitor, methods of manufacture and design structures are provided. The structure includes a coplanar waveguide provided in a kerf of a wafer between a first chip and a second chip. The structure further includes a shunt switch and a series switch coupled to the coplanar waveguide.
摘要:
A semiconductor-on-insulator substrate and a related semiconductor structure, as well as a method for fabricating the semiconductor-on-insulator substrate and the related semiconductor structure, provide for a multiple order radio frequency harmonic suppressing region located and formed within a base semiconductor substrate at a location beneath an interface of a buried dielectric layer with the base semiconductor substrate within the semiconductor-on-insulator substrate. The multiple order radio frequency harmonic suppressing region may comprise an ion implanted atom, such as but not limited to a noble gas atom, to provide a suppressed multiple order radio frequency harmonic when powering a radio frequency device, such as but not limited to a radio frequency complementary metal oxide semiconductor device (or alternatively a passive device), located and formed within and upon a surface semiconductor layer within the semiconductor structure.
摘要:
A semiconductor-on-insulator substrate and a related semiconductor structure, as well as a method for fabricating the semiconductor-on-insulator substrate and the related semiconductor structure, provide for a multiple order radio frequency harmonic suppressing region located and formed within a base semiconductor substrate at a location beneath an interface of a buried dielectric layer with the base semiconductor substrate within the semiconductor-on-insulator substrate. The multiple order radio frequency harmonic suppressing region may comprise an ion implanted atom, such as but not limited to a noble gas atom, to provide a suppressed multiple order radio frequency harmonic when powering a radio frequency device, such as but not limited to a radio frequency complementary metal oxide semiconductor device (or alternatively a passive device), located and formed within and upon a surface semiconductor layer within the semiconductor structure.
摘要:
A semiconductor-on-insulator substrate and a related semiconductor structure, as well as a method for fabricating the semiconductor-on-insulator substrate and the related semiconductor structure, provide for a multiple order radio frequency harmonic suppressing region located and formed within a base semiconductor substrate at a location beneath an interface of a buried dielectric layer with the base semiconductor substrate within the semiconductor-on-insulator substrate. The multiple order radio frequency harmonic suppressing region may comprise an ion implanted atom, such as but not limited to a noble gas atom, to provide a suppressed multiple order radio frequency harmonic when powering a radio frequency device, such as but not limited to a radio frequency complementary metal oxide semiconductor device (or alternatively a passive device), located and formed within and upon a surface semiconductor layer within the semiconductor structure.