摘要:
A semiconductor-on-insulator substrate and a related semiconductor structure, as well as a method for fabricating the semiconductor-on-insulator substrate and the related semiconductor structure, provide for a multiple order radio frequency harmonic suppressing region located and formed within a base semiconductor substrate at a location beneath an interface of a buried dielectric layer with the base semiconductor substrate within the semiconductor-on-insulator substrate. The multiple order radio frequency harmonic suppressing region may comprise an ion implanted atom, such as but not limited to a noble gas atom, to provide a suppressed multiple order radio frequency harmonic when powering a radio frequency device, such as but not limited to a radio frequency complementary metal oxide semiconductor device (or alternatively a passive device), located and formed within and upon a surface semiconductor layer within the semiconductor structure.
摘要:
A semiconductor-on-insulator substrate and a related semiconductor structure, as well as a method for fabricating the semiconductor-on-insulator substrate and the related semiconductor structure, provide for a multiple order radio frequency harmonic suppressing region located and formed within a base semiconductor substrate at a location beneath an interface of a buried dielectric layer with the base semiconductor substrate within the semiconductor-on-insulator substrate. The multiple order radio frequency harmonic suppressing region may comprise an ion implanted atom, such as but not limited to a noble gas atom, to provide a suppressed multiple order radio frequency harmonic when powering a radio frequency device, such as but not limited to a radio frequency complementary metal oxide semiconductor device (or alternatively a passive device), located and formed within and upon a surface semiconductor layer within the semiconductor structure.
摘要:
A semiconductor-on-insulator substrate and a related semiconductor structure, as well as a method for fabricating the semiconductor-on-insulator substrate and the related semiconductor structure, provide for a multiple order radio frequency harmonic suppressing region located and formed within a base semiconductor substrate at a location beneath an interface of a buried dielectric layer with the base semiconductor substrate within the semiconductor-on-insulator substrate. The multiple order radio frequency harmonic suppressing region may comprise an ion implanted atom, such as but not limited to a noble gas atom, to provide a suppressed multiple order radio frequency harmonic when powering a radio frequency device, such as but not limited to a radio frequency complementary metal oxide semiconductor device (or alternatively a passive device), located and formed within and upon a surface semiconductor layer within the semiconductor structure.
摘要:
A semiconductor-on-insulator substrate and a related semiconductor structure, as well as a method for fabricating the semiconductor-on-insulator substrate and the related semiconductor structure, provide for a multiple order radio frequency harmonic suppressing region located and formed within a base semiconductor substrate at a location beneath an interface of a buried dielectric layer with the base semiconductor substrate within the semiconductor-on-insulator substrate. The multiple order radio frequency harmonic suppressing region may comprise an ion implanted atom, such as but not limited to a noble gas atom, to provide a suppressed multiple order radio frequency harmonic when powering a radio frequency device, such as but not limited to a radio frequency complementary metal oxide semiconductor device (or alternatively a passive device), located and formed within and upon a surface semiconductor layer within the semiconductor structure.
摘要:
A method of recycling monitor wafers. The method includes: (a) providing a semiconductor wafer which includes a dopant layer extending from a top surface of the wafer into the wafer a distance less than a thickness of the wafer, the dopant layer containing dopant species; after (a), (b) attaching an adhesive tape to a bottom surface of the wafer; after (b), (c) removing the dopant layer; and after (c), (d) removing the adhesive tape.
摘要:
A wafer processing method. The method includes providing a semiconductor wafer. The semiconductor wafer includes (i) a semiconductor layer and (ii) a dopant layer on top of the semiconductor layer. The dopant layer comprises dopants. The method further includes removing the dopant layer from the semiconductor wafer. No chemical etching is performed on the dopant layer before said removing the dopant layer is performed.
摘要:
A method of recycling monitor wafers. The method includes: (a) providing a semiconductor wafer which includes a dopant layer extending from a top surface of the wafer into the wafer a distance less than a thickness of the wafer, the dopant layer containing dopant species; after (a), (b) attaching an adhesive tape to a bottom surface of the wafer; after (b), (c) removing the dopant layer; and after (c), (d) removing the adhesive tape.
摘要:
A process for forming at least one interface region between two regions of semiconductor material. At least one region of dielectric material comprising nitrogen is formed in the vicinity of at least a portion of a boundary between the two regions of semiconductor material, thereby controlling electrical resistance at the interface.
摘要:
A wafer processing method. The method includes providing a semiconductor wafer. The semiconductor wafer includes (i) a semiconductor layer and (ii) a dopant layer on top of the semiconductor layer. The dopant layer comprises dopants. The method further includes removing the dopant layer from the semiconductor wafer. No chemical etching is performed on the dopant layer before said removing the dopant layer is performed.
摘要:
A method of modulating grain size in a polysilicon layer and devices fabricated with the method. The method comprises forming the layer of polysilicon on a substrate; and performing an ion implantation of a polysilicon grain size modulating species into the polysilicon layer such that an average resultant grain size of the implanted polysilicon layer after performing a pre-determined anneal is higher or lower than an average resultant grain size than would be obtained after performing the same pre-determined anneal on the polysilicon layer without a polysilicon grain size modulating species ion implant.