Abstract:
The present disclosure controls the heat source unit such that a to-be-processed object in which a hydrogen-containing to-be-processed layer is formed is irradiated with light in two stages, and thus the electrical characteristics of a semiconductor device may be suppressed and prevented from being deteriorated due to hydrogen. That is, ultraviolet light (UV) which is firstly radiated may induce a chemical reaction for separating Si—H bonds in the to-be-processed layer, and infrared light (IR) which is secondly radiated may induce a thermal reaction for vaporizing the separated hydrogen from the Si—H bonds. As such, both a chemical reaction for separating bonds of hydrogen and other ions in the to-be-processed layer and a thermal reaction for vaporizing hydrogen are performed, and thus hydrogen may be more easily removed than a temperature at which hydrogen is vaporized from the to-be-processed layer by only a thermal reaction.
Abstract:
Disclosed are an apparatus and method of detecting a temperature through a pyrometer in a non-contact manner, and an apparatus for processing a substrate using the apparatus, and more particularly, an apparatus and method of detecting a temperature, which precisely measures a temperature without any effect by humidity, and an apparatus for processing a substrate using the same. In an exemplary embodiment, an apparatus for detecting a temperature includes a humidity sensor configured to measure a humidity value, a temperature compensation database configured to store a temperature compensation value for each humidity value, and a pyrometer providing a non-contact temperature calculated by adding a temperature compensation value corresponding to a humidity value detected by the humidity sensor to a temperature to be compensated, which is obtained by converting a measured a wavelength intensity of a radiation radiated from an object in a wavelength band to be compensated.
Abstract:
Disclosed is a calibrating apparatus which is adapted to remove a measurement deviation of a pyrometer, and more particularly, to an apparatus for calibrating a pyrometer, which calibrates a reference value so as to remove a deviation in a temperature measured in a pyrometer. The apparatus for calibrating a pyrometer includes a blackbody including a radiant space from which radiant energy is radiated, a body housing configured to receive the blackbody therein and including a light output wall having a light output port connected with the radiant space, a light output wall protecting cover comprising a transparent blocking plate disposed at a position opposite to the light output port so as to transmit a long wavelength of approximately 5 μm to approximately 20 μm may and configured to be coupled with the light output wall of the body housing, and a fixing member configured to fix the light output wall protecting cover to the light output wall of the body housing.
Abstract:
Disclosed is a calibrating apparatus which is adapted to remove a measurement deviation of a pyrometer, and more particularly, to an apparatus for calibrating a pyrometer, which calibrates a reference value so as to remove a deviation in a temperature measured in a pyrometer. The apparatus for calibrating a pyrometer includes a blackbody including a radiant space from which radiant energy is radiated, a body housing configured to receive the blackbody therein and including a light output wall having a light output port connected with the radiant space, a light output wall protecting cover configured to be coupled with the light output wall of the body housing so as to define a passage connecting the light output wall of the body housing and an outside environment, and a fixing member configured to fix the light output wall protecting cover to the light output wall of the body housing.
Abstract:
A gas spraying apparatus according to the embodiment of the present invention includes a spray part disposed and aligned on one side outside a substrate in the width direction of the substrate, and having a plurality of nozzles for spraying gas toward the substrate, and a spray control unit for automatically controlling whether or not each of a plurality of nozzles sprays gas such that a gas density distribution type in the width direction of the substrate becomes a targeted gas density distribution type by the gas sprayed through the plurality of nozzles. Therefore, according to the embodiment of the present invention, it is easy to carry out the process with a plurality of types of process types or a plurality of types of gas density distribution types, and a time for adjusting the open or close operation of the plurality of nozzles can be shortened.
Abstract:
A substrate treatment method in accordance with an exemplary embodiment includes: heating a substrate, for a substrate treatment process, so that a temperature of the substrate reaches a target temperature; calculating the temperature of the substrate using a sensor located facing the substrate while heating the substrate; and controlling an operation of a heating part configured to heat the substrate according to the temperature calculated from the calculating the temperature, wherein the calculating the temperature comprises: measuring a total radiant energy (Et) radiated from the substrate using the sensor; calculating a corrected total emissivity (εt0) by applying a correction value for correcting the total emissivity (εt) which is the emissivity of the radiant energy (Et); and calculating the temperature (Ts) of the substrate using the total radiant energy (Et) and the corrected total emissivity (εt0).
Abstract:
Disclosed is a calibrating apparatus which is adapted to remove a measurement deviation of a pyrometer, and more particularly, to an apparatus for calibrating a pyrometer, which calibrates a reference value so as to remove a deviation in a temperature measured in a pyrometer. The apparatus for calibrating a pyrometer includes a blackbody including a radiant space from which radiant energy is radiated, a body housing configured to receive the blackbody therein and including a light output wall having a light output port connected with the radiant space, a light output wall protecting cover comprising a transparent blocking plate disposed at a position opposite to the light output port so as to transmit a long wavelength of approximately 5 μm to approximately 20 μm may and configured to be coupled with the light output wall of the body housing, and a fixing member configured to fix the light output wall protecting cover to the light output wall of the body housing.