High efficiency distributed device-to-device (D2D) channel access

    公开(公告)号:US10992722B2

    公开(公告)日:2021-04-27

    申请号:US16522272

    申请日:2019-07-25

    Applicant: APPLE INC.

    Abstract: Techniques for facilitating device-to-device (D2D) communications using a high efficiency distributed channel access scheme are generally described herein. In some examples, a communication zone allocated for wireless D2D communications is divided into resource contention and scheduled transmission portions. The resource contention segment may be used to transmit a request message from a transmitting device to a receiving device (a request-to-send message), and transmit a response to the request message from the receiving device to the transmitting device (a clear-to-send message). The response can indicate a time for the data transmission to occur during the scheduled transmission segment. During the scheduled transmission segment, the scheduled data transmission and other D2D data transmissions among the various devices will be performed. In further examples, contention access techniques may be used during the resource contention segment to manage access to the resource channel.

    Systems and methods for semi-persistent scheduling of wireless communications

    公开(公告)号:US10917215B2

    公开(公告)日:2021-02-09

    申请号:US15941504

    申请日:2018-03-30

    Applicant: APPLE INC.

    Abstract: Methods, systems, and devices for transmission and reception of SPS communications are disclosed herein. User equipment (UE) is configured to receive, in a first subframe, a physical downlink control channel or enhanced physical downlink control channel (PDCCH/EPDCCH) corresponding to semi-persistent scheduling (SPS) activation. The PDCCH/EPDCCH conveys a value of nSCID. The UE configures, based on the SPS activation, a downlink (DL) assignment in a second subframe for receiving an SPS physical downlink shared channel (PDSCH) without a corresponding PDCCH/EPDCCH. The UE determines a reference signal sequence corresponding to the SPS PDSCH using nSCID derived from the PDCCH/EPDCCH corresponding to the associated SPS activation. The UE receives the SPS PDSCH in a second subframe. The UE processes the SPS PDSCH based on the reference signal sequence for the SPS PDSCH in the second subframe using the nSCID derived from the PDCCH/EPDCCH corresponding to the associated SPS activation. The UE is configured for transmission mode 10 (TM10).

Patent Agency Ranking