Abstract:
Examples of the present disclosure relate to a method for anomaly response in a system on chip. The method comprises measuring a magnitude of a transient anomaly event in an operating condition of the system on chip. Based on the magnitude it is determined, for each of a plurality of components of the system on chip, an indication of susceptibility of that component to an anomaly event of the measured magnitude. Based on the determined indications of susceptibility for each of the plurality of components, an anomaly response action is determined. The method then comprises performing the anomaly response action.
Abstract:
Methods of performing post-manufacturing adaptation of a data processing apparatus manufactured in accordance with a processor design and corresponding data processing apparatus configurations are provided. Post-manufacturing testing of the data processing apparatus determines any dysfunctional instructions by comparison between component usage profiles for each instruction and a component fault-detection procedure applied to the data processing apparatus. The data processing apparatus can be determined nevertheless to be operationally viable when any dysfunctional instructions can be substituted for by emulation using other functional instructions. The data processing apparatus can be provided with dysfunctional instruction handling circuitry configured to identify occurrence of a program instruction instance of a dysfunctional instruction and to invoke an interrupt handling routine associated with the dysfunctional instruction to emulate the instance of a dysfunctional instruction.
Abstract:
A battery cell monitoring system comprises a flexible substrate able to conform to a surface of a battery cell to be monitored, and a plurality of first-level prediction units integrated onto the flexible substrate, where each first-level prediction unit is positioned at a different location on the flexible substrate to each other first-level prediction unit. Each first-level prediction unit comprises at least one sensor to generate sensor signals indicative of a physical state of the battery cell, and first-level prediction circuitry to generate a predicted battery cell status value in dependence on the sensor signals received from the at least one sensor of that first-level prediction unit. Second-level prediction circuitry is arranged to determine a prediction result in dependence on the predicted battery cell status values generated by the first-level prediction circuitry of each first-level prediction unit, and a communications device is used to output the prediction result at least when the prediction result indicates an occurrence of a critical event.
Abstract:
A data processing apparatus has a plurality of storage elements residing at different physical locations within the apparatus, and fault history circuitry for detecting local transient faults occurring in each storage element, and for maintaining global transient fault history data based on the detected local transient faults. Analysis circuitry monitors the global transient fault history data to determine, based on predetermined criteria, whether the global transient fault history data is indicative of random transient faults occurring within the data processing apparatus, or is indicative of a coordinated transient fault attack. The analysis circuitry is then configured to initiate a countermeasure action on determination of a coordinated transient fault attack. This provides a simple and effective mechanism for distinguishing between random transient faults that may naturally occur, and a coordinated transient fault attack that may be initiated in an attempt to circumvent the security of the data processing apparatus.
Abstract:
There is provided a battery cell monitoring system comprising a flexible substrate able to conform to a surface of a battery cell to be monitored and wireless communication circuitry to be positioned proximate to a surface of the battery cell and arranged to communicate with one or more other battery cell monitoring systems. The battery cell monitoring system is provided with control circuitry integrated onto the flexible substrate to control the wireless communication circuitry to perform two types of communication. The first of the two types of communication is a local communication between the battery cell monitoring system and each of the one or more other battery cell monitoring systems. The second of the two types of communication is a non-local communication between the battery cell monitoring system and a battery management system routed via inter-cell communication with the one or more other battery cell monitoring systems.
Abstract:
Wearable items and methods of monitoring wearable items are disclosed. The wearable item comprises a flexible base material forming at least a portion of the wearable item, plural conductive traces traversing the flexible base material, and conductivity sensing circuitry coupled to the plural conductive traces. The conductivity sensing circuitry is configured to distinguish conductivity from non-conductivity of the plural conductive traces, and configured to generate a conductivity indication for at least one of the plural conductive traces. The plural conductive traces follow indirect paths across the flexible base material, allowing the flexible material to flex and stretch normally without breaking the conductive traces.
Abstract:
Wearable devices, systems of wearable devices, and methods of operating the same are disclosed. A first wearable device worn in contact with the user’s skin monitors the user and comprises a transmission electrode in contact with the user’s skin. A second wearable device comprises a reception electrode worn in contact with the user’s skin. The first wearable device can apply an alert signal to the transmission electrode and measures a transmission current at the transmission electrode. The second wearable device monitors an electrical status of the reception electrode and when the alert signal is detected applies an alert response signal to the receiver electrode. The first wearable device identifies application of the alert response signal to the receiver electrode by measurement of a variation of the transmission current at the transmission electrode whilst the alert signal is applied to the transmission electrode.
Abstract:
Apparatuses and methods for supporting class prediction based on multiple items of feature data are provided. Learning phase training data with known classification are used as inputs. Each event of the training data maps multiple items of feature data to encodings, where a range of values for each feature input are mapped to a given encoding. The concatenated encoding for the event form a joint feature item. Class counters are used to count class known to associated with the training event for the joint feature item in a table. At the conclusion of the training phase the class counter values enable a predicted class to be associated with each joint feature item in the table. In the inference phase the table is used for class prediction generation for new data events. The inference phase may be implemented in hardware which has less data handling capability than in the learning phase.
Abstract:
An apparatus 2 comprises at least three processing circuits 4 to perform redundant processing of a common thread of program instructions. Error detection circuitry 16 is provided comprising a number of comparators 22 for detecting a mismatch between signals on corresponding signal nodes 20 in the processing circuits 4. When a comparator 22 detects a mismatch, this triggers a recovery process. The error detection circuitry 16 generates an unresolvable error signal 36 indicating that a detected area is unresolvable by the recovery process when, during the recovery process, a mismatch is detected by one of the proper subset 34 of the comparators 22. By considering fewer comparators 22 during the recovery process than during normal operation, the chances of unrecoverable errors being detected can be reduced, increasing system availability.
Abstract:
An integrated circuit is provided with error detection circuitry and error repair circuitry. Error tolerance circuitry is responsive to a control parameter to selectively disable the error repair circuitry. The control parameter is dependent on the processing performed within the circuit. For example, the control parameter may be generated in dependence upon the program instruction being executed, the output signal value which is in error, the previous behavior of the circuit or in other ways.