Abstract:
A memory device having an array of memory cells connected to a core voltage level, and access circuitry used to perform a write operation in order to write data into a plurality of addressed memory cells. At least one bit line associated with at least each column in the array containing an addressed memory cell is precharged to the peripheral voltage level prior to the write operation being performed. Word line driver circuitry is then configured to assert a word line signal at the core voltage level on the word line associated with the row of the array containing the addressed memory cells. Write multiplexing driver circuitry asserts a mux control signal to write multiplexing circuitry which then couples the bit line of each addressed memory cell to the write driver circuitry in dependence on the mux control signal identifying which column contains the addressed memory cells.
Abstract:
An integrated level shifting latch circuit receives an input signal in a first voltage domain and generates an output signal in a second voltage domain. Data retention circuitry operates in a transparent phase where a data value is subjected to a level shifting function and is written into the data retention circuitry dependent on the input signal. Control circuitry controls the data retention circuitry to operate in the transparent phase during a first phase of the clock signal and to operate in the latching phase during a second phase of the clock signal. Writing circuitry writes the data value into the data retention circuitry. Contention mitigation circuitry, during the transparent phase, reduces a voltage drop across at least one component within the data retention circuitry.
Abstract:
A memory 2 includes a regular array of storage elements 4. A regular array of write multiplexers 8 is provided outside of the regular array of storage elements 4. The storage element pitch is matched to the write multiplexer pitch. The write multiplexers 10 support a plurality of write ports. When forming a memory design 2, a given instance of an array of write multiplexers 8 may be selected in dependence upon the desired number of write ports to support and this combined with a common form of storage element array 4.
Abstract:
A memory has a normal mode and a power saving mode. The memory has bitline precharge circuitry which during the normal mode selectively couples a pair of bitlines to a precharge node to charge the bitlines to a given voltage level. During the power saving mode the bitlines are isolated from the precharge node. Voltage control circuitry is provided to maintain the precharge node at a first voltage level during the normal mode and at a second voltage level less than the first voltage level during the power saving mode. By reducing the voltage level at the precharge node during the power saving mode, the amount of inrush current occurring when switching from power saving mode to normal mode can be reduced, and this enables the wakeup time to be reduced when returning from power saving mode to normal mode.
Abstract:
An integrated level shifting combinatorial circuit receives a plurality of input signals in a first voltage domain and performs a combinatorial operation to generate an output signal in a second voltage domain. The circuit includes combinatorial circuitry includes first and second combinatorial circuit portions operating in respective first and second voltage domains. The second combinatorial circuit portion has an output node whose voltage level identifies a value of the output signal and includes feedback circuitry which applies a level shifting function to an intermediate signal generated by the first combinatorial circuit portion. A contention mitigation circuitry reduces a voltage drop across at least one component within the feedback circuitry in situations when the combinatorial circuitry's performance of the combinatorial operation causes the combinatorial circuitry to switch the voltage on the output node, the contention mitigation circuitry thereby assists the combinatorial circuitry in the output node voltage switching.
Abstract:
A method of generating a layout of an integrated circuit is disclosed, the layout incorporating both standard cells and at least one memory instance generated by a memory compiler to define a memory device of the integrated circuit. Input data is received specifying one or more properties of a desired memory instance. The memory compiler generates the desired memory instance based on the input data and using the specified memory architecture. A standard cell library is provided. The memory compiler references at least one property of the standard cell library in order to generate the desired memory instance. The layout is then generated by populating standard cell rows with standard cells selected from the standard cell library in order to provide the functional components required by the integrated circuit, and integrating into the layout the desired memory instance provided by the memory compiler.