Micromirror arrays
    2.
    发明授权

    公开(公告)号:US12276784B2

    公开(公告)日:2025-04-15

    申请号:US17635907

    申请日:2020-08-05

    Abstract: A micromirror array comprises a substrate, a plurality of minors for reflecting incident light and, for each mirror (20) of the plurality of minors, at least one piezoelectric actuator (21) for displacing the minor, wherein the at least one piezoelectric actuator is connected to the substrate. The micromirror array further comprises one or more pillars (24) connecting the minor to the at least one piezoelectric actuator. Also disclosed is a method of forming such a micromirror array. The micromirror array may be used in a programmable illuminator. The programmable illuminator may be used in a lithographic apparatus and/or in an inspection apparatus.

    POSITION SENSOR
    4.
    发明申请

    公开(公告)号:US20210124276A1

    公开(公告)日:2021-04-29

    申请号:US17254601

    申请日:2019-06-05

    Abstract: The invention provides a position sensor (300) which comprises an optical system (305, 306) configured to provide measurement radiation (304) to a substrate (307). The optical system is arranged to receive at least a portion of radiation (309) diffracted by a mark (308) provided on the substrate. A processor (313) is applied to derive at least one position-sensitive signal (312) from the received radiation. The measurement radiation comprises at least a first and a second selected radiation wavelength. The selection of the at least first and second radiation wavelengths is based on a position error swing-curve model.

    Metrology sensor, lithographic apparatus and method for manufacturing devices

    公开(公告)号:US10788766B2

    公开(公告)日:2020-09-29

    申请号:US16611500

    申请日:2018-03-06

    Abstract: Disclosed is a metrology sensor apparatus and associated method. The metrology sensor apparatus comprises an illumination system operable to illuminate a metrology mark on a substrate with illumination radiation having a first polarization state and an optical collection system configured to collect scattered radiation, following scattering of the illumination radiation by the metrology mark. The metrology mark comprises a main structure and changes, relative to the first polarization state, at least one of a polarization state of a first portion of the scattered radiation predominately resultant from scattering by the main structure and a polarization state of a second portion of radiation predominately resultant from scattering by one or more features other than the main structure, such that the polarization state of the first portion of the scattered radiation is different to the polarization state of the second portion of the scattered radiation. The metrology sensor apparatus further comprises an optical filtering system which filters out the second portion of the scattered radiation based on its polarization state.

    Dark field microscope
    9.
    发明授权

    公开(公告)号:US12287470B2

    公开(公告)日:2025-04-29

    申请号:US18441710

    申请日:2024-02-14

    Abstract: A dark field metrology device includes an objective lens arrangement and a zeroth order block to block zeroth order radiation. The objective lens arrangement directs illumination onto a specimen to be measured and collects scattered radiation from the specimen, the scattered radiation including zeroth order radiation and higher order diffracted radiation. The dark field metrology device is operable to perform an illumination scan to scan illumination over at least two different subsets of the maximum range of illumination angles; and simultaneously perform a detection scan which scans the zeroth order block and/or the scattered radiation with respect to each other over a corresponding subset of the maximum range of detection angles during at least part of the illumination scan.

Patent Agency Ranking