Abstract:
The present invention makes the use of measurement of a diffraction spectrum in or near an image plane in order to determine a property of an exposed substrate. In particular, the positive and negative first diffraction orders are separated or diverged, detected and their intensity measured. The intensity of each of the first diffraction orders from the diffraction spectrum are compared to determine overlay (or other properties) of exposed layers on the substrate.
Abstract:
The present invention makes the use of measurement of a diffraction spectrum in or near an image plane in order to determine a property of an exposed substrate. In particular, the positive and negative first diffraction orders are separated or diverged, detected and their intensity measured. The intensity of each of the first diffraction orders from the diffraction spectrum are compared to determine overlay (or other properties) of exposed layers on the substrate.
Abstract:
An inspection method, and corresponding apparatus, enables classification of pupil images according to a process variable. The method comprises acquiring diffraction pupil images of a plurality of structures formed on a substrate during a lithographic process. A process variable of the lithographic process varies between formation of the structures, the variation of the process variable resulting in a variation in the diffraction pupil images. The method further comprises determining at least one discriminant function for the diffraction pupil images, the discriminant function being able to classify the pupil images in terms of the process variable.
Abstract:
An inspection method, and corresponding apparatus, enables classification of pupil images according to a process variable. The method comprises acquiring diffraction pupil images of a plurality of structures formed on a substrate during a lithographic process. A process variable of the lithographic process varies between formation of the structures, the variation of the process variable resulting in a variation in the diffraction pupil images. The method further comprises determining at least one discriminant function for the diffraction pupil images, the discriminant function being able to classify the pupil images in terms of the process variable.