Abstract:
Provided is a powder bed fusion apparatus that further reduces the difference in temperature between a powder material at a peripheral region in a fabrication container and a powder material at a center region in the fabrication container during preheating. The powder bed fusion apparatus comprises: a container that has a quadrangular shape as viewed from above and has an opening in an upper surface; a table which is disposed in the opening of the container and onto which a powder material is supplied through the upper surface; and a plurality of heaters that are attached to each of corner portions of sides of the container to heat the powder material on the table through the corner portions.
Abstract:
A resin powder for three-dimensional molding includes ethylene-propylene copolymer particles. The volume average particle size of the ethylene-propylene copolymer particles is within a range of 5 to 200 μm. The ethylene content molar ratio (ethylene/(ethylene+propylene)) in the ethylene-propylene copolymer particles is within a range of 0.001 to 0.04. The melt flow rate (MFR) is within a range of 3 to 40 g/10 min at 230° C.
Abstract:
Provided are a powder bed fusion model having improved model strength and a method of fabricating the same. Applying a laser beam to a layer of a resin powder (8) includes: applying the laser beam with a first energy to a modeling area (ma1) in the first layer of the resin powder from the bottom among n layers of the resin powder, in the modeling area (ma2, ma3, man−2, man−1) in each of the second to (n−1)-th layers of the resin powder, applying the laser beam with the first energy to a projecting portion (PA2, PA3, PAn−1) projecting outward from at least one of the modeling areas in the vertically adjacent layers of the resin powder and to an overlapping portion (OA2, OA3, OAn−1) overlapping the modeling areas in the adjacent layers of the resin powder, lying on the inner side of the projecting portion, and having at least a width equal to the thickness of a layer of the resin powder, and applying the laser beam with a second energy lower than the first energy to a center portion on the inner side of the projecting portion and the overlapping portion; and applying the laser beam with the first energy to the modeling area (man) in the n-th layer of the resin powder.
Abstract:
A powder rapid prototyping method includes steps of forming a thin layer 35a of a powder material, irradiating a heating energy beam to a specific region of the thin layer 35a of the powder material to thereby form a preliminary heating layer 35c whose temperature is elevated, and irradiating the heating energy beam to an inside region of the preliminary heating layer 35c whose temperature is elevated to melt and then solidify the thin layer 35a of the powder material to thereby form a solidified layer, wherein the respective steps are repeatedly implemented to fabricate a rapid prototyping model 51, 52.
Abstract:
A powder rapid prototyping apparatus includes a decompressable chamber, a thin layer forming section which supplies powder material from a powder material housing container provided in the chamber to form a thin layer of the powder material, an energy beam source for heating which outputs energy beam for heating which sinters or melts and models the thin layer of the powder material, and a control section which controls the modeling, wherein the control section exposes the powder material to the decompressed atmosphere before starting modeling, and houses the powder material in the powder material housing containers in a divided manner.