Abstract:
A pixel compensation circuit including a light emitting diode, a drive unit, a control unit, a data write-in unit, a reset unit, and a pull-down unit is disclosed. The control unit is configured to control a voltage drop time of the first node according to a data voltage value received by the data write-in unit, so as to control a gray scale of the light emitting diode. The data write-in unit includes a first transistor, a second transistor, a third transistor and a capacitor. The first transistor is connected to a first voltage source and a second node. The second transistor is connected to the second node and a third node. The third transistor is connected to the third node and a data input source. The first capacitor is connected to the second node and a first reference voltage source.
Abstract:
An optical sensor circuit is provided. In the optical sensor circuit, an output stage circuit transmits a voltage of first and second node to the output line according to a first driving signal. A first sensor is configured to generate a first photocurrent according to a first color light that senses an ambient light, and generate a second photocurrent according to a second color light. A second sensor is configured to generate a third photocurrent according to a third color light, and generate a fourth photocurrent according to the second color light. In a sensing phase, when the first sensor senses the first color light, and the second sensor senses the third color light, the first sensor adjusts a voltage level of the voltage according to the first photocurrent, and the second sensor adjusts the voltage level of the voltage according to the third photocurrent.
Abstract:
An Liquid crystal display panel is provided. The Liquid crystal display panel includes a plurality of pixel elements arranged as a pixel array. The Liquid crystal display panel receives a plurality of data signals, a plurality of gate driving signals, a plurality of control signals, and an extra data signal. Each of the gate driving signals includes a gate pulse; each of the data signals includes a data voltage; the extra data signal includes a data voltage; and each of the control signals includes a gate pulse and a data voltage.
Abstract:
An optical sensing circuit has a plurality of optical sensing units arranged so that the optical sensing circuit is ambient light insensitive or sensitive to light within certain spectrum. The sensitive spectra corresponding to the plurality of optical sensing units are different from one another.
Abstract:
A liquid crystal (LC) pixel circuit of a LC display panel includes a first, a second, a third and a fourth switches, a LC capacitor and a storage capacitor. A first and a control terminals of the first switch respectively receive a common voltage and a first gate signal. A first and a control terminals of the second switch respectively receive a data voltage and a second gate signal. The storage capacitor and the LC capacitor electrically connect between second terminals of the first and second switches. A first and a control terminals of the third switch respectively receive the common voltage and a third gate signal. A first and a control terminals of the fourth switch respectively receive a set voltage and a fourth gate signal. Second terminals of the third and the fourth switches respectively connect to the second terminals of the second and the first switches.
Abstract:
A pixel circuit including a compensation circuit, a writing circuit, a light emitting element, and a power supplying circuit is provided. The compensation circuit comprises a first node, and provides a driving current to the light emitting element according to a voltage of the first node and a system high voltage. The writing circuit provides a data voltage to the compensation circuit according to a first control signal so that the compensation circuit sets the voltage of the first node. The power supplying circuit selectively couples the compensation circuit to the light emitting element, and provides the system high voltage and a system low voltage to the compensation circuit, in which the system low voltage is configured to reset the voltage of the first node. The first control signal and the second control signal are opposite to the first emission signal and the second emission signal, respectively.
Abstract:
A shift register circuit and a gate driver including the shift register circuit. The shift register circuit includes an input circuit, a drive circuit, a pull-down circuit, a regulator circuit and a pull-up circuit. The input circuit is configured to receive a first clock signal and is coupled to the first node. The driving circuit is configured to receive the first clock signal and a second clock signal. The input circuit is coupled to the first node. The pull-down circuit is configured to receive the voltage of the first node. The pull-down circuit is coupled to the first node and an output terminal. The pull-down circuit outputs the first voltage to the output terminal in response to the voltage of the first node.
Abstract:
A pixel driving circuit includes a first capacitor, a data input unit, a liquid crystal capacitor, a control unit and a driving unit. The first capacitor has a first terminal and a second terminal, wherein the first terminal is configured for receiving a first reference voltage. The data input unit is configured for inputting a data signal to the second terminal of the first capacitor according to a first scanning signal. The liquid crystal capacitor has a first terminal and a second terminal. The first terminal receives a first operating signal. The control unit is configured to control a voltage of the second terminal of the liquid crystal capacitor according to a second scanning signal. The driving unit is configured to control the voltage of the second terminal of the liquid crystal capacitor in response to the data input unit is disabled by the first scanning signal.
Abstract:
A pixel circuit includes a light emitting element, a first driver transistor, a second driver transistor, and a first compensation capacitor. A first terminal of the first driving transistor is configured to receive a power signal, and a second terminal of the first driving transistor is electrically coupled to the light emitting element. A first terminal of the second driving transistor receives the power signal, and a control terminal of the second driving transistor is electrically coupled to the light emitting element. The first compensation capacitance is electrically coupled to a control terminal of the first driving transistor and the second terminal of the second driving transistor, respectively.
Abstract:
A shift register circuit includes a driving unit outputting a first scan signal according to a first clock signal; a pull up unit outputting a driving voltage according to one of a second scan signal and a third scan signal; a pull down unit pulling down voltage of an output end according to a second clock signal; a pull down control unit controlling the voltage of the output end and a driving node according to the first clock signal; a reset unit pulling down the voltage level of the driving node according to a touch-enable signal; and an electric storage unit adjusting the voltage of the driving node according to a touch-stop signal. When the touch-enable signal is enabled, the clock signals and the touch-stop signal are disabled, and when the touch-stop signal is enabled, the clock signals and the touch-enable signal are disabled.