Abstract:
A pixel structure includes a data line, a first scan line, first and second transistors, first and second power lines, LED elements, a connection pattern, a first insulation layer, and a first conductive pattern. Each of the first transistor and the second transistor has a first end, a control end, and second end. Each LED element has a first electrode and a second electrode. The second power line is electrically coupled to the first electrodes. The connection pattern is electrically coupled between the second end of the first transistor and the control end of the second transistor. The first conductive pattern is disposed above the first insulation layer and electrically coupled between the second electrodes, the second electrodes are electrically coupled to the second end of the second transistor through the first conductive pattern, and the connection pattern and the first conductive pattern are overlapped in an orthogonal projection direction.
Abstract:
A pixel driving circuit includes a first capacitor, a data input unit, a liquid crystal capacitor, a control unit and a driving unit. The first capacitor has a first terminal and a second terminal, wherein the first terminal is configured for receiving a first reference voltage. The data input unit is configured for inputting a data signal to the second terminal of the first capacitor according to a first scanning signal. The liquid crystal capacitor has a first terminal and a second terminal. The first terminal receives a first operating signal. The control unit is configured to control a voltage of the second terminal of the liquid crystal capacitor according to a second scanning signal. The driving unit is configured to control the voltage of the second terminal of the liquid crystal capacitor in response to the data input unit is disabled by the first scanning signal.
Abstract:
A display apparatus includes a display panel, a light guide plate, at least one light source and at least one reflective body. The light guide plate is disposed below the display panel. The light guide plate has a light-incident surface, a light-emitting surface, a rear surface, a plurality of concave microstructures and a plurality of reflective bodies. The rear surface is located farther away from the display panel than the light-emitting surface is. The light-incident surface is connected to the light-emitting surface and the rear surface. The concave microstructures are located on the rear surface. The reflective bodies are respectively located in the concave microstructures. The light source is disposed opposite to the light-incident surface.
Abstract:
A liquid crystal (LC) pixel circuit of a LC display panel includes a first, a second, a third and a fourth switches, a LC capacitor and a storage capacitor. A first and a control terminals of the first switch respectively receive a common voltage and a first gate signal. A first and a control terminals of the second switch respectively receive a data voltage and a second gate signal. The storage capacitor and the LC capacitor electrically connect between second terminals of the first and second switches. A first and a control terminals of the third switch respectively receive the common voltage and a third gate signal. A first and a control terminals of the fourth switch respectively receive a set voltage and a fourth gate signal. Second terminals of the third and the fourth switches respectively connect to the second terminals of the second and the first switches.
Abstract:
An optical sensing circuit includes a first, a second, and a third optical sensing element and a sampling circuit. The first sensing element provides a first current from a first node to a second node according to an ambient light and a sensing signal. The second optical sensing element drains a second current from the second node to the first node according to the ambient light and the sensing signal. The third optical sensing element is coupled between the first node and the second node. The third optical sensing element receives a first color light, and transmits the first current to the second node or transmits the second current to the first node according to the first color light. The sampling circuit is turned on according to the sampling signal to output a detection signal based on the voltage level of the second node.
Abstract:
A pixel structure includes a data line, a first scan line, first and second transistors, first and second power lines, LED elements, a connection pattern, a first insulation layer, and a first conductive pattern. Each of the first transistor and the second transistor has a first end, a control end, and second end. Each LED element has a first electrode and a second electrode. The second power line is electrically coupled to the first electrodes. The connection pattern is electrically coupled between the second end of the first transistor and the control end of the second transistor. The first conductive pattern is disposed above the first insulation layer and electrically coupled between the second electrodes, the second electrodes are electrically coupled to the second end of the second transistor through the first conductive pattern, and the connection pattern and the first conductive pattern are overlapped in an orthogonal projection direction.
Abstract:
A pixel driving circuit includes a first capacitor, a data input unit, a liquid crystal capacitor, a control unit and a driving unit. The first capacitor has a first terminal and a second terminal, wherein the first terminal is configured for receiving a first reference voltage. The data input unit is configured for inputting a data signal to the second terminal of the first capacitor according to a first scanning signal. The liquid crystal capacitor has a first terminal and a second terminal. The first terminal receives a first operating signal. The control unit is configured to control a voltage of the second terminal of the liquid crystal capacitor according to a second scanning signal. The driving unit is configured to control the voltage of the second terminal of the liquid crystal capacitor in response to the data input unit is disabled by the first scanning signal.
Abstract:
A display panel including data lines, scan lines, pixel structures, power lines and a fixing layer is provided. The pixel structure includes a first transistor, a second transistor and a light emitting diode device. The first transistor is electrically coupled to a corresponding scan line, a corresponding data line and the second transistor. A first end of the light emitting diode device is electrically coupled to the second transistor. The power lines are electrically coupled to the second transistor of at least one of the pixel structures and a second end of the light emitting diode device of at least one of the pixel structures. The fixing layer is disposed on at least one of the power lines. The light emitting diode device of at least one of the pixel structures is disposed on the fixing layer and overlapped with the at least one of the power lines.
Abstract:
A display panel including data lines, scan lines, pixel structures, power lines and a fixing layer is provided. The pixel structure includes a first transistor, a second transistor and a light emitting diode device. The first transistor is electrically coupled to a corresponding scan line, a corresponding data line and the second transistor. A first end of the light emitting diode device is electrically coupled to the second transistor. The power lines are electrically coupled to the second transistor of at least one of the pixel structures and a second end of the light emitting diode device of at least one of the pixel structures. The fixing layer is disposed on at least one of the power lines. The light emitting diode device of at least one of the pixel structures is disposed on the fixing layer and overlapped with the at least one of the power lines.
Abstract:
A liquid crystal (LC) pixel circuit of a LC display panel includes a first, a second, a third and a fourth switches, a LC capacitor and a storage capacitor. A first and a control terminals of the first switch respectively receive a common voltage and a first gate signal. A first and a control terminals of the second switch respectively receive a data voltage and a second gate signal. The storage capacitor and the LC capacitor electrically connect between second terminals of the first and second switches. A first and a control terminals of the third switch respectively receive the common voltage and a third gate signal. A first and a control terminals of the fourth switch respectively receive a set voltage and a fourth gate signal. Second terminals of the third and the fourth switches respectively connect to the second terminals of the second and the first switches.