摘要:
Systems and/or methods that facilitate discharging bit lines (BL) associated with memory arrays in nonvolatile memory at a controlled rate are presented. A discharge component facilitates discharging the BL at a desired rate thus preventing the “hot switching” phenomenon from occurring within a y-decoder component(s) associated with the nonvolatile memory. The discharge component can be comprised of, in part, a discharge transistor component that controls the rate of BL discharge wherein the gate voltage of the discharge transistor component can be controlled by a discharge controller component. The rate of BL discharge can be determined by the size of discharge transistor component used in the design, the strength and/or size of the y-decoder component, the number of erase errors that occur for a particular memory device, and/or other factors in order to facilitate preventing hot switching from occurring.
摘要:
Systems and/or methods that facilitate discharging bit lines (BL) associated with memory arrays in nonvolatile memory at a controlled rate are presented. A discharge component facilitates discharging the BL at a desired rate thus preventing the “hot switching” phenomenon from occurring within a y-decoder component(s) associated with the nonvolatile memory. The discharge component can be comprised of, in part, a discharge transistor component that controls the rate of BL discharge wherein the gate voltage of the discharge transistor component can be controlled by a discharge controller component. The rate of BL discharge can be determined by the size of discharge transistor component used in the design, the strength and/or size of the y-decoder component, the number of erase errors that occur for a particular memory device, and/or other factors in order to facilitate preventing hot switching from occurring.
摘要:
Methods and apparatus are disclosed for erasing memory cells in a virtual ground memory core, wherein a row decoder apparatus employs a protective voltage to wordlines of a sector of cells while concurrently providing an erase voltage to selected wordlines of the same physical sector. Decoder circuitry and methods are disclosed for selecting a memory cell sector to be erased and adjacent sectors to be protected, which may be used in single bit and dual bit memory devices, and which enable column decoder circuitry to reduce the number of sector select circuits.
摘要:
Methods and apparatus are disclosed for erasing memory cells in a virtual ground memory core, wherein a row decoder apparatus employs a protective voltage to wordlines of a sector of cells while concurrently providing an erase voltage to selected wordlines of the same physical sector. Decoder circuitry and methods arc disclosed for selecting a memory cell sector to be erased and adjacent sectors to be protected, which may be used in single bit and dual bit memory devices, and which enable column decoder circuitry to reduce the number of sector select circuits.
摘要:
A non-volatile memory cell array, such as a Flash NOR array, is programmed by applying voltages to bit lines that connect to memory cells in the memory cell array. A first bit line corresponding to a first memory cell in the memory array may be turned on to perform a first programming operation for the first memory cell and second bit line corresponding to a second memory cell in the memory array may be turned on to perform a second programming operation that is configured to complete after the first programming operation. The turning on/off of the first and second bit lines may be overlapped to share charge between the first and second bit lines. This overlapping can reduce wasted power and decrease programming pulse overshoot problems.
摘要:
A method is provided for programming a nonvolatile memory array including an array of memory cells, where each memory cell including a substrate, a control gate, a charge storage element, a source region and a drain region. The method includes receiving a programming window containing a predetermined number of bits that are to be programmed in the array and determining which of the predetermined number of bits are to be programmed in the memory array. The predetermined number of bits are simultaneously programmed to corresponding memory cells in the array. A programming state of the predetermined number of bits in the array is simultaneously verified.
摘要:
A method is provided for programming a nonvolatile memory array including an array of memory cells, where each memory cell including a substrate, a control gate, a charge storage element, a source region and a drain region. The method includes receiving a programming window containing a predetermined number of bits that are to be programmed in the array and determining which of the predetermined number of bits are to be programmed in the memory array. The predetermined number of bits are simultaneously programmed to corresponding memory cells in the array. A programming state of the predetermined number of bits in the array is simultaneously verified.
摘要:
Systems and methodologies are provided herein for increasing operation speed uniformity in a flash memory device. Due to the characteristics of a typical flash memory array, memory cells in a memory array may experience distributed substrate resistance that increases as the distance of the memory cell from an edge of the memory array increases. This difference in distributed substrate resistance can vary voltages supplied to different memory cells in the memory array depending on their location, which can in turn cause non-uniformity in the speed of high voltage operations on the memory array such as programming. The systems and methodologies provided herein reduce this non-uniformity in operation speed by providing compensated voltage levels to memory cells in a memory array based at least in part on the location of each respective memory cell. For example, a compensated operation voltage can be provided that is higher near the center of the memory array and lower near an edge of the memory array, thereby lessening the effect of distributed substrate resistance and providing increased operation speed uniformity throughout the memory array.
摘要:
Systems and methodologies are provided herein for increasing operation speed uniformity in a flash memory device. Due to the characteristics of a typical flash memory array, memory cells in a memory array may experience distributed substrate resistance that increases as the distance of the memory cell from an edge of the memory array increases. This difference in distributed substrate resistance can vary voltages supplied to different memory cells in the memory array depending on their location, which can in turn cause non-uniformity in the speed of high voltage operations on the memory array such as programming. The systems and methodologies provided herein reduce this non-uniformity in operation speed by providing compensated voltage levels to memory cells in a memory array based at least in part on the location of each respective memory cell. For example, a compensated operation voltage can be provided that is higher near the center of the memory array and lower near an edge of the memory array, thereby lessening the effect of distributed substrate resistance and providing increased operation speed uniformity throughout the memory array.
摘要:
A semiconductor memory device (104) selectably connectable to an external high voltage power supply (122) is provided. The semiconductor memory device (104) includes a switch (314), a detector (316) and a timing device (318). The switch (314) is connected to external voltage supply signals and selectably couples the external voltage supply signals to memory cells (305) of the semiconductor memory device (104) for memory operations thereof. The external voltage supply signals including a high voltage signal (412) provided from the external high voltage power supply (122) and an operational voltage signal Vcc (402). The detector (316) is connected to the external voltage supply signals for generating a timer activation signal (404) in response to detecting an operational voltage power-on period. The timing device (318) signals the switch (314) to decouple the high voltage signal (412) and the operational voltage signal (402) from the memory cells (305) in response to the timer activation signal (404) and to recouple the high voltage signal (412) and the operational voltage signal (402) to the memory cells (305) a time delay interval thereafter. The time delay interval is determined in response to the high voltage signal (412).