Abstract:
A semiconductor structure having: a doped silicon carbide heat spreader; a semi-insulating silicon carbide layer disposed over the doped silicon carbide heat spreader; and a nitride (such as GaN, Indium nitride, Aluminum nitride) semiconductor layer disposed on the semi-insulating silicon carbide layer.
Abstract:
A detector structure having a sensor for detecting energy impinging on the structure in the infrared and/or optical frequency band; an electronics section disposed behind the sensor for processing electrical signal produced by the sensor in response to the sensor detecting the infrared and/or optical energy; and an electrically conductive layer for inhibiting electromagnetic energy outside of the visible and infrared portions of the spectrum, such electrically conductive layer being disposed between impinging energy and the electronics section, such layer having a transmissivity greater than 90 percent in the visible and infrared portions of the spectrum and being reflective and/or dissipative to portions of the impinging energy outside of the visible and infrared portions of the spectrum. In one embodiment an electrically conductive layer having a substantially constant absorptivity to electromagnetic energy within the visible and infrared portions of the spectrum. In one embodiment, the layer is graphene.
Abstract:
A detector structure having a sensor for detecting energy impinging on the structure in the infrared and/or optical frequency band; an electronics section disposed behind the sensor for processing electrical signal produced by the sensor in response to the sensor detecting the infrared and/or optical energy; and an electrically conductive layer for inhibiting electromagnetic energy outside of the visible and infrared portions of the spectrum, such electrically conductive layer being disposed between impinging energy and the electronics section, such layer having a transmissivity greater than 90 percent in the visible and infrared portions of the spectrum and being reflective and/or dissipative to portions of the impinging energy outside of the visible and infrared portions of the spectrum. In one embodiment an electrically conductive layer having a substantially constant absorptivity to electromagnetic energy within the visible and infrared portions of the spectrum. In one embodiment, the layer is graphene.