摘要:
The process and catalyst system disclosed herein comprises the polymerization of a conjugated diene such as 1,3-butadiene in hydrocarbon solution in the presence of a new catalyst composition comprising:(a) a dihydrocarbyl magnesium compound of 1-10 carbon atoms, preferably a dialkyl magnesium having 3-8 carbon atoms in each alkyl group, and(b) an alkali metal compound of the formula R(SM).sub.n, R'.sub.2 NM, R'NHM or RC.tbd.CM, wherein R is a hydrocarbyl radical of 1-10 carbon atoms, preferably alkyl, n is 1, 2 or 3, M is Li, Na or K, and R' is a hydrocarbyl radical of 1-10 carbon atoms or an acyl radical of 1-10 carbon atoms.This process is particularly advantageous in that the polymer product can be controlled to have only a relatively small amount of 1,2 structure in accordance with the polymerization temperature. For example, at 125.degree. C. with Li compounds, the product generally has a 1,2 content of 12.6% or less; at 50.degree. C., 10.6% or less; and at 25.degree. C., 7% or less. Where 1,2 contents of 17-25% are desired, these may be obtained by using the Na compounds, and when 1,2 contents of 37-54% are desired, these may be obtained by using K compounds. Where even higher 1,2 contents are desired, they may be obtained by using an amine, such as tetramethylethylenediamine, as an additional catalyst component.
摘要:
The process and catalyst system disclosed herein comprises the polymerization of a conjugated diene such as 1,3-butadiene in hydrocarbon solution in the presence of a new catalyst composition comprising:(a) a dihydrocarbyl magnesium compound of 1-10 carbon atoms, preferably a dialkyl magnesium having 3-8 carbon atoms in each alkyl group, and(b) an alkali metal compound of the formula R(SM).sub.n, R'.sub.2 NM, R'NHM or RC.tbd.CM, wherein R is a hydrocarbyl radical of 1-10 carbon atoms, preferably alkyl, n is 1, 2 or 3, M is Li, Na or K, and R' is a hydrocarbyl radical of 1-10 carbon atoms or an acyl radical of 1-10 carbon atoms.This process is particularly advantageous in that the polymer product can be controlled to have only a relatively small amount of 1,2 structure in accordance with the polymerization temperature. For example, at 125.degree. C. with Li compounds, the product generally has a 1,2 content of 12.6% or less; at 50.degree. C., 10.6% or less; and at 25.degree. C., 7% or less. Where 1,2 contents of 17-25% are desired, these may be obtained by using the Na compounds, and when 1,2 contents of 37-54% are desired, these may be obtained by using K compounds. Where even higher 1,2 contents are desired, they may be obtained by using an amine, such as tetramethylethylenediamine, as an additional catalyst component.
摘要:
A process and catalyst system is disclosed herein for the preparation of (co)polymers having a 1,2-microstructure of between about 20 and about 65 percent. These (co)polymers are prepared in a hydrocarbon or non-polar solvent from a monomer system which contains at least one 1,3-diene monomer. The catalyst system which is employed in the production of the (co)polymer is a combination of an anionic initiator based on lithium and a phosphine oxide modifier which is substituted with three saturated heterocyclic rings, each hetero ring containing one nitrogen atom and either four, five or six carbon atoms.
摘要:
A process and catalyst system is disclosed herein for the preparation of (co)polymers having a 1,2-microstructure of between about 20 and about 65 percent. These (co)polymers are prepared in a hydrocarbon or non-polar solvent from a monomer system which contains at least one 1,3-diene monomer. The catalyst system which is employed in the production of the (co)polymer is a combination of an anionic initiator based on lithium and a phosphine oxide modifier which is substituted with three saturated heterocyclic rings, each hetero ring containing one nitrogen atom and either four, five or six carbon atoms.
摘要:
The invention is directed towards the formation of polymers and copolymers using late transition metal polymerization catalyst complexes which are formed in situ. In the first process step of the instant invention, a composition having the formula MXZn is simultaneously contacted with a ligand and an activating cocatalyst. Referring to the formula, M is selected from the group consisting of Cu, Ag, and Au; X is selected from the group consisting of halides, hydride, triflate, acetates, borates, C1 through C12 alkyl, C1 through C12 alkoxy, C3 through C12 cycloalkyl, C3 through C12 cycloalkoxy, aryl, thiolates, carbon monoxide, cyanate, olefins, and any other moiety into which a monomer can insert; Z is selected from the group consisting of halides, hydride, triflate, acetates, borates, C1 through C12 alkyl, C1 through C12 alkoxy, C3 through C12 cycloalkyl, C3 through C12 cycloalkoxy, aryl, thiolates, carbon monoxide, cyanate, olefins, a neutral coordinating ligand, and any other moiety into which a monomer can insert; n equals 0, 1 or 2. In the second process step of the instant invention, olefinic monomers are contacted with the activated catalyst composition under polymerization conditions.
摘要:
The invention is directed towards a metal complex having the formula LMX.sub.1 X.sub.2. L is a bidentate nitrogen-containing ligand with more than two nitrogen atoms. M is copper, silver, or gold. X.sub.1 and X.sub.2 are independently selected from the group consisting of halogens, C.sub.1 through C.sub.12 straight chain, branched, or cycloalkyl or aryl, C.sub.1 through C.sub.12 straight chain, branched, or cycloalkoxy, hydride, triflate, trifluoroacetate, trisperfluorotetraphenylborate, and tetrafluoroborate. Such metal complexes have a tetrahedral or pseudo-tetrahedral structure. The invention relates to a catalyst composition of the reaction product of the metal complex and an activating cocatalyst. The invention is also directed towards a method for forming polymers and copolymers using such catalyst compositions, especially copolymers having segments formed from olefinic monomers and monomers having at least one hydrocarbyl polar functional group.
摘要:
A method of viscosifying an organic liquid which comprises adding a sufficient quantity of a hydrolyzed Ziegler Natta-ester containing copolymer haivng a molecular weight of about 100,00 to about 10,000,000 to said organic liquid to increase the viscosity of said organic liquid, said copolymer having the formula: ##STR1## wherein R.sub.1 is an alkyl group having about 4 to about 6 carbon atoms, R.sub.2 is an alkylene group having 3 to 16 carbon atoms, x is about 95.0 to about 99.95 mole % and y is about 0.05 to about 5.0 mole %.
摘要:
The invention disclosed herein provides a novel thermally reversible copolymer having up to about 11 percent by weight of an N-(alkoxymethyl)acrylamide, a diene-containing synthetic rubber and a metal. The thermally reversible copolymer can be blended with conventional styrene-butadiene rubbers to improve the green strength thereof. Also disclosed herein is a process for improving the green strength of styrene-butadiene rubber which includes the steps of charging a reaction vessel with water, an emulsifier, an initiator, an N-(alkoxymethyl)acrylamide monomer and a vinyl monomer where one is desired, purging the vessel with an inert gas, charging a diene monomer and an activator to the reaction vessel, polymerizing the monomers to form a colymer latex, coagulating the latex with an aqueous metal salt to form a thermally reversible polymer and compounding the thermally reversible polymer with styrene-butadiene rubber.
摘要:
The invention disclosed herein provides a novel thermally reversible copolymer having up to about 11 percent by weight of an N-(alkoxymethyl)acrylamide, a diene-containing synthetic rubber and a metal. The thermally reversible copolymer can be blended with conventional styrene-butadiene rubbers to improve the green strength thereof. Also disclosed herein is a process for improving the green strength of styrene-butadiene rubber which includes the steps of charging a reaction vessel with water, an emulsifier, an initiator, an N-(alkoxymethyl)acrylamide monomer and a vinyl monomer where one is desired, purging the vessel with an inert gas, charging a diene monomer and an activator to the reaction vessel, polymerizing the monomers to form a copolymer latex, coagulating the latex with an aqueous metal salt to form a thermally reversible polymer and compounding the thermally reversible polymer with styrene-butadiene rubber.