Abstract:
A microfluidic chip (12) for sample preparation and a sample preparation system (10) are provided. The microfluidic chip (10) includes: a chip body (14) and a plurality of injection ports (16, 18, 24, 30, 36, 38, 40) provided in the chip body (14). A plurality of chambers (20, 26, 32) and a plurality of mixers (22, 28, 34) are provided in the chip body (14). A first chamber (20) is configured to receive a sample via a first injection port (16) and a reducing agent via a second injection port (18). A first mixer (22) in fluid communication with the first chamber (20) is operable to mix the sample and the reducing agent from the first chamber (20) to produce a denatured and reduced sample. A second chamber (26) in fluid communication with the first mixer (22) is configured to receive an alkylating agent via a third injection port (24). A second mixer (28) in fluid communication with the second chamber (26) is operable to mix the denatured and reduced sample with the alkylating agent to produce an alkylated sample. A third chamber (32) in fluid communication with the second mixer (28) is configured to receive a protein precipitation solution via a fourth injection port (30). A third mixer (34) in fluid communication with the third chamber (32) is operable to mix the alkylated sample with the protein precipitation solution to produce a precipitated sample. A reaction chamber (42) in fluid communication with the third mixer (34) is provided in the chip body (14), the reaction chamber (42) being configured to receive a washing buffer via a fifth injection port (36), a digestion buffer via a sixth injection port (38) and an elution buffer via a seventh injection port (40). A depth filter (43) is received in the reaction chamber (42). A first discharge port (44) and a second discharge port (46) are provided in the chip body (14) in fluid communication with the reaction chamber (42). The first discharge port (44) is operable to discharge waste from the reaction chamber (42) and the second discharge port (46) is operable to discharge a prepared sample.
Abstract:
According to embodiments of the present invention, a microfluidic device for gel electrophoresis is provided. The microfluidic device includes a sample channel configured to receive a sample; a stacking channel comprising a preloaded stacking reagent; and a separation channel comprising a preloaded separation reagent, wherein the preloaded stacking reagent has a physical characteristic different from that of the preloaded separation reagent; and wherein the sample channel, the stacking channel and the separation channel are in fluid communication with one another. According to further embodiments of the present invention, a method of manufacturing a microfluidic device for gel electrophoresis is also provided.
Abstract:
The present disclosure describes a microfluidic chip for culturing and in vitro testing of 3D organotypic cultures. The tests may be performed directly on the organotypic culture in the microfluidic chip. The microfluidic chip includes at least one microfluidic unit which includes two fluidic compartments, such as upper and lower, separated by a permeable supporting structure, one or more access opening for the fluidic compartments, and a set of lids interchangeable with a set of insets. The permeable support structure serves as a support for the organotypic culture. The upper and lower compartments may include inlets and outlets which allow fluids to be perfused into the lower compartment and fluids to be perfused into the upper compartment. The access opening may be closed with a lid or accommodate an inset.
Abstract:
A testing device is provided. The testing device includes a capturing tool and a microfluidic chip having a plurality of chambers connected in a network, a sample receiving port connected to the network, and a guide structure configured to receive the capturing tool, wherein the capturing tool is configured to capture sample in a distal position from the guide structure and further configured to transfer the captured sample to the sample receiving port in a proximal position from the guide structure.