摘要:
Disclosed herein are a sterilization method and a sterilization apparatus which are capable of exerting a sterilizing effect on all microorganisms or viruses and which are safe for a living body to be sterilized. The sterilization method includes releasing reactive particles onto microorganisms or viruses to fragment proteins contained in the microorganisms or viruses on condition that nucleic acids contained in the microorganisms or viruses are not disrupted. The sterilization apparatus releases air containing reactive particles that fragment proteins without disrupting nucleic acids to kill microorganisms or viruses present in a target.
摘要:
In order to remove a pathogenic effect of a microorganism in a room or a work space in a short period of time, an ion diffusing apparatus, which includes an ion generator (17, 18) for generating positive ions each including H+(H2O)m and negative ions each including O2−(H2O)n, where m and n are arbitrary integers, and a blower for delivering the positive ions and the negative ions, which are generated from the ion generator (17), from a blowout opening, is operated to widely distribute, with a high concentration, the positive ions and the negative ions in the room.
摘要:
In order to remove a pathogenic effect of a microorganism in a room or a work space in a short period of time, an ion diffusing apparatus, which includes an ion generator (17, 18) for generating positive ions each including H+(H2O)m and negative ions each including O2−(H2O)n, where m and n are arbitrary integers, and a blower for delivering the positive ions and the negative ions, which are generated from the ion generator (17), from a blowout opening, is operated to widely distribute, with a high concentration, the positive ions and the negative ions in the room.
摘要:
When the electrically driven fan (14) of a vacuum cleaner is driven, air containing dust is drawn into the cleaner main body (1) through a hose (7) connected to a hose socket (8) and is exhausted into the outside of the cleaner main body (1) through an exhaust port (1b) via first and second suction passageways (10, 13). Disposed outside the first suction passageway (10) is an ion generator (23), it being arranged that plus and minus ions generated in the ion generator (23) are fed to the air stream flowing in the first suction passageway (10). Since the plus and minus ions kill floating germs in the air stream, the exhaust can be purified.
摘要:
When the electrically driven fan (14) of a vacuum cleaner is driven, air containing dust is drawn into the cleaner main body (1) through a hose (7) connected to a hose socket (8) and is exhausted into the outside of the cleaner main body (1) through an exhaust port (1b) via first and second suction passageways (10, 13). Disposed outside the first suction passageway (10) is an ion generator (23), it being arranged that plus and minus ions generated in the ion generator (23) are fed to the air stream flowing in the first suction passageway (10). Since the plus and minus ions kill floating germs in the air stream, the exhaust can be purified.
摘要:
When the electrically driven fan (14) of a vacuum cleaner is driven, air containing dust is drawn into the cleaner main body (1) through a hose (7) connected to a hose socket (8) and is exhausted into the outside of the cleaner main body (1) through an exhaust port (1b) via first and second suction passageways (10, 13). Disposed outside the first suction passageway (10) is an ion generator (23), it being arranged that plus and minus ions generated in the ion generator (23) are fed to the air stream flowing in the first suction passageway (10). Since the plus and minus ions kill floating germs in the air stream, the exhaust can be purified.
摘要:
The sterilizing effect of particle irradiation on microorganisms for the sterilizing treatment thereof can be evaluated. The evaluation can be done by supplying microorganisms in the space inside a container (8), allowing particles (7) for the sterilizing treatment of microorganisms to irradiate the microorganisms, sampling the microorganisms by a sampling means (6) after the irradiation of the particles (7) and measuring the sampled microorganisms. The microorganisms as the subject for the sterilizing treatment can be a combination of one or more members selected from the group consisting of bacteria, mycete, viruses and allergens. As the particles, for example, positive ions, negative ions, and gases of positive ions and negative ions in mixture, charged particles such as α rays and β rays, various plasma gas particles, particles such as ozone and radical particles, and particles of chemical agent can be used.
摘要:
When the electrically driven fan (14) of a vacuum cleaner is driven, air containing dust is drawn into the cleaner main body (1) through a hose (7) connected to a hose socket (8) and is exhausted into the outside of the cleaner main body (1) through an exhaust port (1b) via first and second suction passageways (10, 13). Disposed outside the first suction passageway (10) is an ion generator (23), it being arranged that plus and minus ions generated in the ion generator (23) are fed to the air stream flowing in the first suction passageway (10). Since the plus and minus ions kill floating germs in the air stream, the exhaust can be purified.
摘要:
A contact includes a plate with a width that ranges from 0.1 mm or more to 1 mm or less, and a stress concentrated place, where a surface roughness (Ra) on the stress concentrated place is 0.2 μm or less. When samples whose surface roughness Ra is 0.040 μm, 0.080 μm, 0.120 μm, and 0.180 μm were used to study a number of repetitive fracture times, as the surface roughness Ra was smaller, the number of repetitive fracture times became larger. Particularly, it is found that the surface roughness Ra may be 0.200 μm or less in order to satisfy 3000 times as a number of operating times of the battery connector. Further, the surface roughness Ra may be 0.080 μm or less in order to satisfy 6000 times as the number of operating times when a safety factor is 2.
摘要:
A contact includes a plate with a width that ranges from 0.1 mm or more to 1 mm or less, and a stress concentrated place, where a surface roughness (Ra) on the stress concentrated place is 0.2 μm or less. When samples whose surface roughness Ra is 0.040 μm, 0.080 μm, 0.120 μm, and 0.180 μm were used to study a number of repetitive fracture times, as the surface roughness Ra was smaller, the number of repetitive fracture times became larger. Particularly, it is found that the surface roughness Ra may be 0.200 μm or less in order to satisfy 3000 times as a number of operating times of the battery connector. Further, the surface roughness Ra may be 0.080 μm or less in order to satisfy 6000 times as the number of operating times when a safety factor is 2.