摘要:
A magnetic control device including an antiferromagnetic layer, a magnetic layer placed in contact with one side of the antiferromagnetic layer, and an electrode placed in contact with another side of the antiferromagnetic layer, wherein the direction of the magnetization of the magnetic layer is controlled by voltage applied between the magnetic layer and the electrode. In particular, when an additional magnetic layer is further laminated on the magnetic layer placed in contact with the antiferromagnetic layer via a non-magnetic layer, the direction of the magnetization of the controlled magnetic layer can be detected as a change in the electric resistance. Since such a magnetic control device, in principle, responds to the electric field or magnetic field, it forms a magnetic component capable of detecting an electric signal or a magnetic signal. In this case, the direction of the magnetization basically is maintained until the next signal is detected, so that such a device also can form an apparatus. Thus, a magnetic control device capable of controlling the magnetization with voltage and magnetic component and a memory apparatus using the same are provided.
摘要:
The present invention provides a magnetic head having improved characteristics, using a magnetoresistive device in which current flows across the film plane such as a TMR device. In a first magnetic head of the present invention, when the area of a non-magnetic layer is defined as a device cross-section area, and the area of a yoke is defined as a yoke area, viewed along the direction perpendicular to the surface of the substrate over which the yoke and the magnetoresistive device are formed, then the device cross-section area is not less than 30% of the yoke area, so that a resistance increase of the device cross-section area is suppressed. In a second magnetic head of the present invention, a magnetoresistive device is formed on a substrate, and a yoke is provided above a non-magnetic layer constituting the device. In a third magnetic head of the present invention, the free layer of the magnetoresistive device includes at least two magnetic films and at least one non-magnetic film that are laminated alternately, and the thickness of the non-magnetic layer is not less than 2 nm and not more than 10 nm, and magnetostatic coupling is dominant. In a fourth magnetic head of the present invention, a magnetic gap is provided adjacent to the magnetoresistive device and the magnetic films are coupled antiferromagnetically.
摘要:
A magneto-resistive effect element includes a first ferromagnetic film; a second ferromagnetic film; and a first nonmagnetic film interposed between the first ferromagnetic film and the second ferromagnetic film. The first ferromagnetic film has a magnetization more easily rotatable than a magnetization of the second ferromagnetic film by an external magnetic field. The first ferromagnetic film has an effective magnetic thickness of about 2 nm or less.
摘要:
A magneto-resistive effect element includes a first ferromagnetic film; a second ferromagnetic film; and a first nonmagnetic film interposed between the first ferromagnetic film and the second ferromagnetic film. The first ferromagnetic film has a magnetization more easily rotatable than a magnetization of the second ferromagnetic film by an external magnetic field. The first ferromagnetic film has an effective magnetic thickness of about 2 nm or less.
摘要:
A magnetic head including a magnetic substrate for operating as a first electrode, a multi-layer film formed on a portion of the surface of the magnetic substrate an inter-layer insulating layer provided to cover side surfaces of the multi-layer film, a flux guide formed on surfaces of the multi-layer film and inter-layer insulating layers, a non-magnetic conductive layer formed on a surface of the flux guide, and a second electrode formed on a surface of the non-magnetic conductive layer, in which the multi-layer film includes a first magnetic layer formed on a portion of the surface of the magnetic substrate and includes a fixed layer, and a second magnetic layer including a non-magnetic layer formed on a surface of the first magnetic layer and a free layer formed on a surface of the non-magnetic layer.
摘要:
The present invention provides a magnetic head having improved characteristics, using a magnetoresistive device in which current flows across the film plane such as a TMR device. In a first magnetic head of the present invention, when the area of a non-magnetic layer is defined as a device cross-section area, and the area of a yoke is defined as a yoke area, viewed along the direction perpendicular to the surface of the substrate over which the yoke and the magnetoresistive device are formed, then the device cross-section area is not less than 30% of the yoke area, so that a resistance increase of the device cross-section area is suppressed. In a second magnetic head of the present invention, a magnetoresistive device is formed on a substrate, and a yoke is provided above a non-magnetic layer constituting the device. In a third magnetic head of the present invention, the free layer of the magnetoresistive device includes at least two magnetic films and at least one non-magnetic film that are laminated alternately, and the thickness of the non-magnetic layer is not less than 2 nm and not more than 10 nm, and magnetostatic coupling is dominant. In a fourth magnetic head of the present invention, a magnetic gap is provided adjacent to the magnetoresistive device and the magnetic films are coupled antiferromagnetically.
摘要:
The present invention provides a magnetic head having improved characteristics, using a magnetoresistive device in which current flows across the film plane such as a TMR device. In a first magnetic head of the present invention, when the area of a non-magnetic layer is defined as a device cross-section area, and the area of a yoke is defined as a yoke area, viewed along the direction perpendicular to the surface of the substrate over which the yoke and the magnetoresistive device are formed, then the device cross-section area is not less than 30% of the yoke area, so that a resistance increase of the device cross-section area is suppressed. In a second magnetic head of the present invention, a magnetoresistive device is formed on a substrate, and a yoke is provided above a non-magnetic layer constituting the device. In a third magnetic head of the present invention, the free layer of the magnetoresistive device includes at least two magnetic films and at least one non-magnetic film that are laminated alternately, and the thickness of the non-magnetic layer is not less than 2 nm and not more than 10 nm, and magnetostatic coupling is dominant. In a fourth magnetic head of the present invention, a magnetic gap is provided adjacent to the magnetoresistive device and the magnetic films are coupled antiferromagnetically.
摘要:
A magnetoresistive device including a high-resistivity layer (13), a first magnetic layer (12) and a second magnetic layer (14), the first magnetic layer (12) and the second magnetic layer (14) being arranged so as to sandwich the high-resistivity layer (13), wherein the high-resistivity layer (13) is a barrier for passing tunneling electrons between the first magnetic layer (12) and the second magnetic layer (14), and contains at least one element LONC selected from oxygen, nitrogen and carbon; at least one layer A selected from the first magnetic layer (12) and the second magnetic layer (14) contains at least one metal element M selected from Fe, Ni and Co, and an element RCP different from the metal element M; and the element RCP combines with the element LONC more easily in terms of energy than the metal element M. Accordingly, a novel magnetoresistive device having a low junction resistance and a high MR can be obtained.
摘要翻译:一种磁电阻器件,包括高电阻率层(13),第一磁性层(12)和第二磁性层(14),第一磁性层(12)和第二磁性层(14) 所述高电阻率层(13),其中所述高电阻率层(13)是用于在所述第一磁性层(12)和所述第二磁性层(14)之间穿过隧穿电子的势垒,并且包含至少一个元素L' SUB> ONC SUB>选自氧,氮和碳; 从第一磁性层(12)和第二磁性层(14)中选择的至少一层A包含至少一种选自Fe,Ni和Co的金属元素M和不同的元素R < 从金属元素M; 并且元件R SUB>与元件L ON ON ON以比金属元件M更容易地组合。因此,具有低结电阻的新型磁阻器件和 可以获得高MR。
摘要:
A magneto-resistive effect memory element according to the present invention includes a first ferromagnetic film; a second ferromagnetic film; a first nonmagnetic film provided between the first ferromagnetic film and the second ferromagnetic film, a first conductive film for generating a magnetic field for causing magnetization inversion in at least one of the first ferromagnetic film and the second ferromagnetic film, the first conductive film not being electrically in contact with the first ferromagnetic film or the second ferromagnetic film; and a second conductive film and a third conductive film for supplying an electric current to the first ferromagnetic film, the first nonmagnetic film, and the second ferromagnetic film. The first ferromagnetic film and the second ferromagnetic film have different magnetization inversion characteristics with respect to the magnetic field, and the first nonmagnetic film contains at least a nitride.
摘要:
The present invention provides a magnetic head having improved characteristics, using a magnetoresistive device in which current flows across the film plane such as a TMR device. In a first magnetic head of the present invention, when the area of a non-magnetic layer is defined as a device cross-section area, and the area of a yoke is defined as a yoke area, viewed along the direction perpendicular to the surface of the substrate over which the yoke and the magnetoresistive device are formed, then the device cross-section area is not less than 30% of the yoke area, so that a resistance increase of the device cross-section area is suppressed. In a second magnetic head of the present invention, a magnetoresistive device is formed on a substrate, and a yoke is provided above a non-magnetic layer constituting the device. In a third magnetic head of the present invention, the free layer of the magnetoresistive device includes at least two magnetic films and at least one non-magnetic film that are laminated alternately, and the thickness of the non-magnetic layer is not less than 2 nm and not more than 10 nm, and magnetostatic coupling is dominant. In a fourth magnetic head of the present invention, a magnetic gap is provided adjacent to the magnetoresistive device and the magnetic films are coupled antiferromagnetically.