摘要:
A cylinder head has a ceramic precombustion chamber for an internal combustion engine. The cylinder head includes a part of the cylinder head made of a ceramic body having an injection aperture communicating with a main combustion chamber for jetting burning gases therethrough, a metal sleeve fitted on an outer circumference of the ceramic body and fitted in a precombustion chamber insert bore forming part of the cylinder head, and a head gasket interposed between the cylinder block forming the main combustion chamber and the ceramic body, the metal sleeve and the cylinder head. A surface of the ceramic body facing to the head gasket extends onto a side of the main combustion chamber beyond a surface of the ceramic body opening the injection aperture into the main combustion chamber.
摘要:
A ceramic precombustion chamber construction for an internal combustion engine including a precombustion chamber formed by a ceramic body to be inserted in a precombustion chamber receiving cavity of a metal cylinder head. Projections are formed on an outer circumferential surface of a metal sleeve fitted on the ceramic body, or on an inner circumferential surface of the precombustion chamber receiving cavity of a metal cylinder head, or on an outer circumferential surface of the ceramic body. Thermal insulating spaces are formed by the projections and the inner circumferential surface of the precombustion chamber receiving cavity or the outer circumferential surface of the metal sleeve or the outer circumferential surface of the ceramic body. One of the projections is formed with a glow-plug receiving aperture which communicates with a glow-plug receiving aperture formed in the precombustion chamber receiving cavity of the metal cylinder head. As a result, leakage of burnt gases is prevented to ensure a complete thermal insulating effect.
摘要:
A precombustion chamber construction for an internal combustion engine comprises a precombustion chamber constructed by a ceramic body having a glow-plug receiving aperture to be inserted in a precombustion chamber receiving cavity of a metal cylinder head. A metal sleeve may be fitted on the ceramic body. A seat is formed at an entrance of a glow-plug receiving aperture on an outer circumferential surface of the metal sleeve, thereby preventing any leakage of burnt gases to ensure the complete thermal insulating effect. The metal sleeve is not necessarily needed. In this case, the seat is formed at an entrance of the glow-plug receiving aperture on an outer circumferential surface of the ceramic body.
摘要:
A semiconductor device manufacturing method capable of coping with scale reduction of the semiconductor device and forming contact holes without deteriorating the device separation characteristics is provided. This method has the following steps. First, in the laminating process, at least a first layer, a second layer, and a third layer are formed in sequence. The second layer and the third layer are laminated over the first layer in sequence so as to cover a plurality of gate electrodes formed on the first layer. Second, in the first etching process, an opening unit is formed between the gate electrodes, and the third layer is etched using the second layer as an etching stopper. Third, in the depositing process, an insulating material film is deposited on the side wall of the opening unit and the bottom portion of the opening unit to a thickness with which the insulating material film functions as a spacer for the insulation. Fourth, in the second etching process, a contact hole is formed by anisotropically etching the insulating material film deposited at the bottom portion of the opening unit and the second layer beneath the insulating material film to expose the first layer.
摘要:
In a method of fabricating a semiconductor device, first metal interconnection patterns, first via patterns and second metal interconnection patterns are positioned in such a way that each of antenna ratios of the first metal patterns, the first via patterns and the second metal patterns becomes equal to or smaller than an allowable antenna ratio. Next, a width of each of the first metal patterns is broadened by a minimum line width of the first metal patterns. The broadened first metal patterns are connected at a first area where a distance between the broadened first metal patterns is smaller than a minimum size of the first via patterns. Then, a second area is extracted where the first metal patterns and the second metal patterns do not exist. Additional first via patterns are placed in the second area. Each of the additional first via patterns has a minimum size with a minimum pitch in the second area. Finally, the additional first via pattern which do not meet a minimum allowable distance between the first metal patterns and the first via patterns is deleted.
摘要:
In a semiconductor device fabricating method for fabricating a semiconductor device having a high-density region in which transistors are arranged with a relatively high density, and a low-density region in which transistors are arranged in with a relatively low density, a silicon nitride film of a thickness great enough for the silicon nitride film to serve as a stopper is deposited over the entire surface of the silicon wafer, so that regions between the transfer gates in the high-density region may not be blocked up after removing side walls formed in the entire transistor region. A part of the silicon nitride film in the low-density region, namely, a peripheral circuit region, is removed.
摘要:
A technique for etching a silicon oxide film using a silicon nitride film as a stopper is provided so that a contact hole is opened in a self-aligned manner, etc., which corresponds to a semiconductor with a microstructure and a high aspect ratio. In a method of manufacturing a semiconductor device including an etching process for etching a silicon oxide film using a silicon nitride film as a stopper, atoms of one or more kinds selected from a group consisting of carbon and atoms whose reactivity to fluorine and oxygen is equivalent to that of carbon are implanted into said silicon nitride film by an ion implantation method before said etching process, so that selectivity of silicon oxide for silicon nitride in said etching process is increased.