摘要:
The present invention provides a TiO2—SiO2 glass whose coefficient of linear thermal expansion in the range of the time of irradiation with EUV light is substantially zero when used as an optical member of an exposure tool for EUVL and which has extremely high surface smoothness. The present invention relates to a TiO2-containing silica glass having a TiO2 content of from 7.5 to 12% by mass, a temperature at which a coefficient of linear thermal expansion is 0 ppb/° C., falling within the range of from 40 to 110° C., and a standard deviation (σ) of a stress level of striae of 0.03 MPa or lower within an area of 30 mm×30 mm in at least one plane.
摘要:
The present invention provides a TiO2—SiO2 glass whose coefficient of linear thermal expansion in the range of the time of irradiation with EUV light is substantially zero when used as an optical member of an exposure tool for EUVL and which has extremely high surface smoothness. The present invention relates to a TiO2-containing silica glass having a TiO2 content of from 7.5 to 12% by mass, a temperature at which a coefficient of linear thermal expansion is 0 ppb/° C., falling within the range of from 40 to 110° C., and a standard deviation (σ) of a stress level of striae of 0.03 MPa or lower within an area of 30 mm×30 mm in at least one plane.
摘要:
The present invention is to provide a TiO2—SiO2 glass whose coefficient of linear thermal expansion at the time of irradiating with high EUV energy light becomes substantially zero when used as an optical member of an exposure tool for EUVL. The present invention relates to a TiO2-containing silica glass, having a fictive temperature of 1,000° C. or lower, a OH concentration of 600 ppm or higher, a temperature at which the coefficient of linear thermal expansion becomes 0 ppb/° C. of from 40 to 110° C., and an average coefficient of linear thermal expansion in the temperature range of 20 to 100° C., of 50 ppb/° C. or lower.
摘要:
The present invention is to provide a TiO2—SiO2 glass having suitable thermal expansion properties as an optical member of an exposure tool for EUVL. The present invention relates to a TiO2-containing silica glass having a temperature, at which a coefficient of thermal expansion is 0 ppb/° C., falling within the range of 23±4° C. and a temperature width, in which a coefficient of thermal expansion is 0±5 ppb/° C., of 5° C. or more.
摘要:
The present invention provides a TiO2—SiO2 glass whose coefficient of linear thermal expansion upon irradiation with high EUV energy light is substantially zero, which is suitable as an optical member of an exposure tool for EUVL. The present invention relates to a TiO2-containing silica glass having a halogen content of 100 ppm or more; a fictive temperature of 1,100° C. or lower; an average coefficient of linear thermal expansion in the range of from 20 to 100° C. of 30 ppb/° C. or lower; a temperature width ΔT, in which a coefficient of linear thermal expansion is 0±5 ppb/° C., of 5° C. or greater; and a temperature, at which a coefficient of linear thermal expansion is 0 ppb/° C., falling within the range of from 30 to 150° C.
摘要:
The claimed invention relates to a process for producing an optical material for EUV lithography, wherein the optical material contains a silica glass having a TiO2 concentration of from 3 to 12 mass % and a hydrogen molecule content of less than 5×1017 molecules/cm3 in the glass. The process including coating a multilayer film on the silica glass by ion beam sputtering.
摘要翻译:所要求保护的发明涉及一种用于制造用于EUV光刻的光学材料的方法,其中所述光学材料包含玻璃中TiO 2浓度为3至12质量%且氢分子含量小于5×10 17分子/ cm 3的二氧化硅玻璃 。 该方法包括通过离子束溅射在二氧化硅玻璃上涂覆多层膜。
摘要:
It is to provide a silica glass containing TiO2, having a wide temperature range wherein the coefficient of thermal expansion is substantially zero. A silica glass containing TiO2, which has a TiO2 concentration of from 3 to 10 mass %, a OH group concentration of at most 600 mass ppm and a Ti3+ concentration of at most 70 mass ppm, characterized by having a fictive temperature of at most 1,200° C., a coefficient of thermal expansion from 0 to 100° C. of 0±150 ppb/° C., and an internal transmittance T400-700 per 1 mm thickness in a wavelength range of from 400 to 700 nm of at least 80%. A process for producing a silica glass containing TiO2, which comprises porous glass body formation step, F-doping step, oxygen treatment step, densification step and vitrification step.
摘要:
The present invention provides a TiO2—SiO2 glass in which when used as an optical member for an exposure tool for EUVL, a thermal expansion coefficient is substantially zero at the time of irradiation with high-EUV energy light, and physical properties of a multilayer can be kept over a long period of time by releasing hydrogen from the glass. The present invention relates to a TiO2-containing silica glass having a fictive temperature of 1,100° C. or lower, a hydrogen molecule concentration of 1×1016 molecules/cm3 or more, and a temperature, at which a linear thermal expansion coefficient is 0 ppb/° C., falling within the range of from 40 to 110° C.
摘要:
The present invention is to provide a TiO2—SiO2 glass whose coefficient of linear thermal expansion at the time of irradiating with high EUV energy light becomes substantially zero when used as an optical member of an exposure tool for EUVL. The present invention relates to a TiO2-containing silica glass, having a fictive temperature of 1,000° C. or lower, a OH concentration of 600 ppm or higher, a temperature at which the coefficient of linear thermal expansion becomes 0 ppb/° C. of from 40 to 110° C., and an average coefficient of linear thermal expansion in the temperature range of 20 to 100° C., of 50 ppb/° C. or lower.
摘要:
The present invention provides a TiO2—SiO2 glass whose coefficient of linear thermal expansion upon irradiation with high EUV energy light is substantially zero, which is suitable as an optical member of an exposure tool for EUVL. The present invention relates to a TiO2-containing silica glass having a halogen content of 100 ppm or more; a fictive temperature of 1,100° C. or lower; an average coefficient of linear thermal expansion in the range of from 20 to 100° C. of 30 ppb/° C. or lower; a temperature width ΔT, in which a coefficient of linear thermal expansion is 0±5 ppb/° C., of 5° C. or greater; and a temperature, at which a coefficient of linear thermal expansion is 0 ppb/° C., falling within the range of from 30 to 150° C.