摘要:
A permanent magnetic alloy comprising of an intermetallic compound of rare earth elements and transition metals, shown by the formula:R(Ni.sub.x Fe.sub.y Co.sub.1-x-y-z Cu.sub.z).sub.Awherein R is at least one selected from the lanthanide light rare earth elements including Y, such as Y, La, Ce, Pr, Nd and Sm, and0.02.ltoreq.x.ltoreq.0.55x/y=0.07-25.00.01.ltoreq.y.ltoreq.0.650.02.ltoreq.z.ltoreq.0.306.0
摘要翻译:一种永久磁性合金,由稀土元素和过渡金属的金属间化合物组成,如下式所示:R(NixFeyCo1-xy-zCuz)A其中R为选自包含Y的镧系稀土元素中的至少一种,如 Y,La,Ce,Pr,Nd和Sm以及0.02 = x <0.55 x / y = 0.07-25.0 0.01 = = 0.65 0.02 = z < <8.0优选地,将Ni和Fe以基本上等摩尔量加入。
摘要:
Its basic means is a monolithically bonded construct prepared by monolithically bonding together a rare-earth magnet 2 and a an alloy material that is a high melting point metal or a high specific-tenacity material through the solid phase diffusion bonding by the hot isostatic pressing treatment, and a monolithically bonded construct with an interposal of a thin layer of the high melting point metal between a rare-earth magnet 2 and an alloy material 3, 4 that is a high specific-tenacity material. As a method for the bonding, there is used a hot isostatic pressing treatment method in which a rare-earth An magnet and a high melting-point metal are laminated together, thereby to prepare an object to be treated, then the object is put into a hermetic-type high pressure container having an inner wall portion equipped with a heater, then the object is uniformly pressurized in all directions by a synergistic effect caused by pressure and temperature, while the object is maintained for a certain period of time under a certain pressure and temperature condition in an atmosphere of an inert gas, thereby to monolithically bond the object. With this, it is possible to obtain a bonded construct in which a magnet can monolithically be bonded with another metal member with a high strength, without deteriorating magnetic characteristics, such that the rare-earth magnet's insufficiency in brittleness, rigidity, tenacity and the like is compensated.
摘要:
A magnetically anisotropic sintered permanent magnet of the FeCoBR system (R is sum of R.sub.1 and R.sub.2) wherein:R.sub.1 is Dy, Tb, Gd, Ho, Er, Tm and/or Yb, andR.sub.2 comprises 80 at % or more of Nd and Pr in R.sub.2, and the balance of other rare earth elements exclusive of R.sub.1,said system consisting essentially of, by atomic percent, 0.05 to 5% of R.sub.1, 12.5 to 20% of R, 4 to 20% of B up to 35% of Co, and the balance being Fe. Additional elements M(Ti, Zr, Hf, Cr, Mn, Ni, Ta, Ge, Sn, Sb, Bi, Mo, Nb, Al, V, W) may be present.
摘要:
A magnetically anisotropic sintered permanent magnet of the FeCoBR system (R is sum of R.sub.1 and R.sub.2) wherein:R.sub.1 is Dy, Tb, Gd, Ho, Er, Tm and/or Yb, andR.sub.2 comprises 80 at % or more of Nd and Pr in R.sub.2, and the balance of other rare earth elements exclusive of R.sub.1,said system consisting essentially of, by atomic percent, 0.05 to 5% of R.sub.1, 12.5 to 20% of R, 4 to 20% of B up to 35% of Co, and the balance being Fe. Additional elements M(Ti, Zr, Hf, Cr, Mn, Ni, Ta, Ge, Sn, Sb, Bi, Mo, Nb, Al, V, W) may be present.
摘要:
Permanent magnetic materials of the Fe-B-R type are produced by:preparing an metallic powder having a mean particle size of 0.3-80 microns and a composition of, by atomic percent, 8-30% R (rare earth elements), 2-28% B, and the balance Fe, compacting, sintering at a temperature of 900-1200 degrees C., and aging at a temperature ranging from 350 degrees C. to the temperature for sintering. Co and additional elements M (Ti, Ni, Bi, V, Nb, Ta, Cr, Mo, W, Mn, Al, Sb, Ge, Sn, Zr, Hf) may be present.
摘要:
A process for producing permanent magnet materials, which comprises the steps of:forming an alloy powder having a mean particle size of 0.3-80 microns and composed of, in atomic percentage, 8-30% R (provided that R is at least one of rare earth elements including Y), 2-28% B, and the balance being Fe and inevitable impurities,sintering the formed body at a temperature of 900.degree.-1200.degree. C.,subjecting the sintered body to a primary heat treatment at a temperature of 750.degree.-1000.degree. C.,then cooling the resultant body to a temperature of no higher than 680.degree. C. at a cooling rate of 3.degree.-2000.degree. C./min, andfurther subjecting the thus cooled body to a secondary heat treatment at a temperature of 480.degree.-700.degree. C.35 MGOe, 40 MGOe or higher energy product can be obtained with specific compositions.
摘要:
A magnetically anisotropic sintered permanent magnet of the FeBR system in which R is sum of R.sub.1 and R.sub.2 wherein:R.sub.1 is Dy, Tb, Gd, Ho, Er, Tm and/or Yb, andR.sub.2 comprises 80 at % or more of Nd and Pr in R.sub.2 and the balance of at least one of other rare earth elements exclusive of R.sub.1,said system comprising by atomic percent, 0.05 to 5% of R.sub.1, 12.5 to 20% of R, 4 to 20% of B, and the balance being Fe with impurities. Additional elements M(Ti, Zr, Hf, Cr, Mn, Ni, Ta, Ge, Sn, Sb, Bi, Mo, Nb, Al, V, W,) may be present.
摘要:
A process for producing permanent magnet materials, which comprises the steps of:forming an alloy powder having a mean particle size of 0.3-80 microns and composed of, in atomic percentage, 8-30% R (provided that R is at least one of rare earth elements including Y), 2-28% B, and the balance being Fe and inevitable impurities,sintering the formed body at a temperature of 900.degree.-1200.degree. C.,subjecting the sintered body to a primary heat treatment at a temperature of 750.degree.-1000.degree. C.,then cooling the resultant body to a temperature of no higher than 680.degree. C. at a cooling rate of 3.degree.-2000.degree. C./min, andfurther subjecting the thus cooled body to a secondary heat treatment at a temperature of 480.degree.-700.degree. C.35 MGOe, 40 MGOe or higher energy product can be obtained with specific compositions.
摘要:
A magnetically anisotropic sintered permanent magnet of the FeBR system in which R is sum of R.sub.1 and R.sub.2 wherein:R.sub.1 is Dy, Tb, Gd, Ho, Er, Tm and/or Yb, andR.sub.2 comprises 80 at % or more of Nd and Pr in R.sub.2 and the balance of at least one of other rare earth elements exclusive of R.sub.1,said system comprising by atomic percent, 0.05 to 5% of R.sub.1, 12.5 to 20% of R, 4 to 20% of B, and the balance being Fe with impurities. Additional elements M(Ti, Zr, Hf, Cr, Mn, Ni, Ta, Ge, Sn, Sb, Bi, Mo, Nb, Al, V, W,) may be present.
摘要:
An organic electroluminescence device utilizes a novel combination of one or more biscarbazole derivative compounds as the phosphorescent host material in combination with an organometallic phosphorescent material as a dopant in the light emitting region of the device, where the biscarbazole derivative compounds are represented by a formula (1A) or (2A) below: where A1 represents a substituted or unsubstituted nitrogen-containing heterocyclic group having 1 to 30 ring carbon atoms; A2 represents a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, or substituted or unsubstituted nitrogen-containing heterocyclic group having 1 to 30 ring carbon atoms; X1 and X2 each are a linking group; Y1 to Y4 each represent a substituent; p and q represent an integer of 1 to 4; and r and s represent an integer of 1 to 3; and the organometallic phosphorescent material is a compound having a substituted chemical structure represented by the formula (4A): where each R is independently selected from the group consisting of H, alkyl, alkenyl, alkynyl, alkylaryl, CN, CF3, CnF2n+1, trifluorovinyl, CO2R, C(O)R, NR2, NO2, OR, halo, aryl, heteroaryl, substituted aryl, substituted heteroaryl or a heterocyclic group; M is a platinum group metal; Ar′, Ar″, Ar′″ and Ar″″ each independently represent a substituted or unsubstituted aryl or heteroaryl substituent on the phenylpyridine ligand; a is 0 or 1; b is 0 or 1; c is 0 or 1; d is 0 or 1; m is 1 or 2; n is 1 or 2; m+n is the maximum number of ligands that can be coordinated to M, and wherein at least one of a, b, c, and d is 1 and when at least one of a and b is 1 and at least one of b and c is 1, at least one of Ar′ and Ar″ is different from at least one of Ar′″ and Ar″″.