摘要:
Diffractive pigment flakes are selectively aligned to form an image. In one embodiment, flakes having a magnetic layer are shaped to facilitate alignment in a magnetic field. In another embodiment, the flakes include a magnetically discontinuous layer. In a particular embodiment, deposition of nickel on a diffraction grating pattern produces magnetic needles along the grating pattern that allow magnetic alignment of the resulting diffractive pigment flakes. Color scans of test samples of magnetically aligned flakes show high differentiation between illumination parallel and perpendicular to the direction of alignment of the magnetic diffractive pigment flakes.
摘要:
Apparatus and related methods align magnetic flakes in a carrier, such as an ink vehicle or a paint vehicle to create optically variable images in a high-speed, linear printing operation. Images can provide security features on high-value documents, such as bank notes. Magnetic flakes in the ink are aligned using magnets in a linear printing operation. Selected orientation of the magnetic pigment flakes can achieve a variety of illusive optical effects that are useful for decorative or security applications.
摘要:
Diffractive pigment flakes are selectively aligned to form an image. In one embodiment, flakes having a magnetic layer are shaped to facilitate alignment in a magnetic field. In another embodiment, the flakes include a magnetically discontinuous layer. In a particular embodiment, deposition of nickel on a diffraction grating pattern produces magnetic needles along the grating pattern that allow magnetic alignment of the resulting diffractive pigment flakes. Color scans of test samples of magnetically aligned flakes show high differentiation between illumination parallel and perpendicular to the direction of alignment of the magnetic diffractive pigment flakes.
摘要:
Apparatus and related methods align magnetic flakes in a carrier, such as an ink vehicle or a paint vehicle to create optically variable images in a high-speed, linear printing operation. Images can provide security features on high-value documents, such as bank notes. Magnetic flakes in the ink are aligned using magnets in a linear printing operation. Selected orientation of the magnetic pigment flakes can achieve a variety of illusive optical effects that are useful for decorative or security applications.
摘要:
A metameric optical structure is disclosed having first optical structures comprising diffractive flakes having diffractive structures thereon, and a second optical structures having non-diffractive flakes which may have other special effect properties, such as color shifting. At one angle of incidence or one viewing angle, near normal. The hues match and at other angles they do not match. The diffractive flakes are preferably magnetically aligned so that the grating structures are parallel. Disclosed is also an image formed of at least a first region of diffractive flakes and a second region of non-diffractive flakes wherein the regions are adjacent one another and wherein one of the regions forms a logo, symbol or indicia that appears or disappears in dependence upon the angle of viewing.
摘要:
A method and image made by the method is disclosed wherein non-spherical magnetically alignable optical pigment flakes in transparent carrier are applied to a substrate and are aligned by applying a magnetic field to the substrate. The pigment flakes align along magnetic field lines and a tool for impressing or scribing the flakes is applied to a sub-region of the substrate to realign or remove flakes from a desired region. For example a scribing tool can be used to scribe a signature or other marks within the magnetically aligned flakes. The flakes are then cured and the image is preserved which has optical and tactile features.
摘要:
Diffractive pigment flakes are selectively aligned to form an image. In one embodiment, flakes having a magnetic layer are shaped to facilitate alignment in a magnetic field. In another embodiment, the flakes include a magnetically discontinuous layer. In a particular embodiment, deposition of nickel on a diffraction grating pattern produces magnetic needles along the grating pattern that allow magnetic alignment of the resulting diffractive pigment flakes. Color scans of test samples of magnetically aligned flakes show high differentiation between illumination parallel and perpendicular to the direction of alignment of the magnetic diffractive pigment flakes.
摘要:
A metameric optical structure is disclosed having first optical structures comprising diffractive flakes having diffractive structures thereon, and a second optical structures having non-diffractive flakes which may have other special effect properties, such as color shifting. At one angle of incidence or one viewing angle, near normal. The hues match and at other angles they do not match. The diffractive flakes are preferably magnetically aligned so that the grating structures are parallel. Disclosed is also an image formed of at least a first region of diffractive flakes and a second region of non-diffractive flakes wherein the regions are adjacent one another and wherein one of the regions forms a logo, symbol or indicia that appears or disappears in dependence upon the angle of viewing.
摘要:
A method and image made by the method is disclosed wherein non-spherical magnetically alignable optical pigment flakes in transparent carrier are applied to a substrate and are aligned by applying a magnetic field to the substrate. The pigment flakes align along magnetic field lines and a tool for impressing or scribing the flakes is applied to a sub-region of the substrate to realign or remove flakes from a desired region. For example a scribing tool can be used to scribe a signature or other marks within the magnetically aligned flakes. The flakes are then cured and the image is preserved which has optical and tactile features.
摘要:
Multilayered magnetic pigment flakes and foils are provided. The pigment flakes can have a stacked layer structure on opposing sides of a magnetic core, or can be formed as an encapsulant structure with encapsulating layers around the magnetic core. The magnetic core in the stacked layer structure includes a magnetic layer that is sandwiched between opposing insulator layers, which in turn are sandwiched between opposing reflector layers. Similarly, the magnetic core in the encapsulant structure includes a magnetic layer that is surrounded by an insulator layer, which in turn is surrounded by a reflector layer. The insulator layers in the pigment flakes substantially prevent corrosion of the flakes when exposed to harsh environments. Some embodiments of the pigment flakes and foils exhibit a discrete color shift at differing angles of incident light or viewing. The pigment flakes can be interspersed into liquid media such as paints or inks to produce colorant compositions for subsequent application to objects or papers. The foils can be laminated to various objects or can be formed on a carrier substrate.