Abstract:
The method prevents oxidation or contamination phenomena of conductive interconnection structures in semiconductor devices and includes providing a layer of semiconductor or oxide base, a conductive layer or stack on the base layer, and an antireflection coating (ARC) layer on the conductive layer or stack. The method provides a thin dielectric covering layer on the antireflection coating layer to fill or cover the microfissures existing in the antireflection coating layer.
Abstract:
A process for defining a chalcogenide material layer using a chlorine based plasma and a mask, wherein the portions of the chalcogenide material layer that are not covered by the mask are etched away. In a phase change memory cell having a stack of a chalcogenide material layer and an AlCu layer, the AlCu layer is etched first using a chlorine based plasma at a higher temperature; then the lateral walls of the AlCu layer are passivated; and then the chalcogenide material layer is etched at a lower temperature.
Abstract:
A process for forming a tapered trench in a dielectric material includes the steps of forming a dielectric layer on a semiconductor wafer, and plasma etching the dielectric layer; during the plasma etch, the dielectric layer is chemically and physically etched simultaneously.
Abstract:
A process for forming a tapered trench in a dielectric material includes the steps of forming a dielectric layer on a semiconductor wafer, and plasma etching the dielectric layer; during the plasma etch, the dielectric layer is chemically and physically etched simultaneously.
Abstract:
A method is provided for patterning a wafer comprising at least one substrate for the manufacture of an integrated circuit. The method comprises: etching at least one portion of the substrate with a reactive gas plasma to obtain an optical emission signal, resulting from the products of the reaction between the plasma and the substrate and having a predetermined spectral fingerprint; carrying on the etching of the substrate up to a predetermined end point; and monitoring the spectral fingerprint of the optical emission signal to detect the etching end point. The method comprises the further insertion of an inert gas in the plasma to obtain an increase in the intensity of the optical emission signal.
Abstract:
The method prevents oxidation or contamination phenomena of conductive interconnection structures in semiconductor devices and includes providing a layer of semiconductor or oxide base, a conductive layer or stack on the base layer, and an antireflection coating (ARC) layer on the conductive layer or stack. The method provides a thin dielectric covering layer on the antireflection coating layer to fill or cover the microfissures existing in the antireflection coating layer.
Abstract:
The method prevents oxidation or contamination phenomena of conductive interconnection structures in semiconductor devices and includes providing a layer of semiconductor or oxide base, a conductive layer or stack on the base layer, and an antireflection coating (ARC) layer on the conductive layer or stack. The method provides a thin dielectric covering layer on the antireflection coating layer to fill or cover the microfissures existing in the antireflection coating layer.
Abstract:
A process for defining a chalcogenide material layer using a chlorine based plasma and a mask, wherein the portions of the chalcogenide material layer that are not covered by the mask are etched away. In a phase change memory cell having a stack of a chalcogenide material layer and an AlCu layer, the AlCu layer is etched first using a chlorine based plasma at a higher temperature; then the lateral walls of the AlCu layer are passivated; and then the chalcogenide material layer is etched at a lower temperature.