摘要:
A system and method for testing the jitter tolerance and signal attenuation tolerance of an optoelectronic device is disclosed. The system includes a generation circuit, delay circuit and comparison circuitry. A first sequence of bits is generated, delayed, and sent to the optoelectronic device. The optoelectronic device receives the bits and retransmits them as a second sequence to the comparison circuitry, which compares the two bit sequences to determine a bit error rate. The bit error rate is then used to determine the jitter tolerance and, in an alternate embodiment, the signal attenuation tolerance of the optoelectronic device being tested.
摘要:
The present invention relates generally to an improvement in the ability of test systems to test bit processing capacities of electronic devices, and in particular an improvement in their ability to measure a signal propagation delay through an object connected to an optoelectronic device. The present invention includes determining for how long after a specific bit or bit group is transmitted by an optical transceiver the bit or bit group is received at the other end of the object connected to the optical transceiver.
摘要:
Systems and methods are disclosed measuring the turn-on and turn-off times of an optoelectronic transceiver's transmitter circuitry. The method includes generating a two bit sequences from separate bit sequence generators using the same controlling pattern. The first bit sequence is transmitted through an optoelectronic device and compared with corresponding bit groups in the second bit sequence. The optoelectronic device is disabled and a count of compared bit groups is kept until the comparison indicates that the optoelectronic device is completely off. Using the count and one or more of the bit groups, a turn-off time is calculated. Alternatively, the method is used to calculate a turn-on time. The optoelectronic device is enabled and a count is kept from the time the device is enabled to when the comparison of the corresponding bit groups indicates that the optoelectronic device is completely on.
摘要:
Systems and methods to measure signal propagation delay through objects. The system includes a controller, a single shot pulse generator, a first pulse/edge former, a multiplexer/demultiplexer, a second pulse/edge former, a timer, and a counter. The controller initializes the system, the clock and the counter. A pulse is sent from the single shot pulse generator to the first pulse/edge former. The pulse is propagated through the first pulse/edge former to the multiplexer, through a device under test, to the demultiplexer, and to the second pulse/edge former. The second pulse edge generator provides the pulse to the counter, which counts a predetermined number of pulses, and the clock, which measures the amount of time the counter counts the pulses. The propagation delay of the device under test is then calculated based on the counted number of pulses and the elapsed time measured by the clock.
摘要:
Systems and methods to measure signal propagation delay through objects. The system includes a controller, a single shot pulse generator, a first pulse/edge former, a multiplexer/demultiplexer, a second pulse/edge former, a timer, and a counter. The controller initializes the system, the clock and the counter. A pulse is sent from the single shot pulse generator to the first pulse/edge former. The pulse is propagated through the first pulse/edge former to the multiplexer, through a device under test, to the demultiplexer, and to the second pulse/edge former. The second pulse edge generator provides the pulse to the counter, which counts a predetermined number of pulses, and the clock, which measures the amount of time the counter counts the pulses. The propagation delay of the device under test is then calculated based on the counted number of pulses and the elapsed time measured by the clock.
摘要:
The invention relates to an arrangement and a method for detecting and indicating laser radiation comprising a laser device (36) producing the laser radiation, such as rotation lasers or line lasers, and an indicating device (22) with at least one laser beam detector and at least one indicating element (26, 28, 30) which indicates the detected laser radiation. In order to precisely indicate the position of the laser radiation to be detected using uncomplicated circuitry, it is proposed that the at least one laser beam detector and the at least one indicating element are the same component in form of an LED (26, 28, 30).
摘要:
The invention concerns a method for beam coordination between a first base station (M1) and a second base station (P1), wherein interfering beams (B2-B4) transmitted from the first base station (M1) are determined based on measured reference signals, dependent on a ranking of interfering beams (B2-B4) which shall be restricted in use, a restriction of a use of radio resources in the first base station (M1) in at least one ranked interfering beam (B3) is performed, and user terminals (UE1, UE2) served by the second base station (P1) are scheduled on radio resources which are restricted in use in the first base station (M1) in said at least one ranked interfering beam (B3), a base station and a user terminal therefor.
摘要:
A concept for a mobile relay station transceiver (100), a mobility management entity (200) and base station transceiver (300; 301; 302) in a mobile communication system (500), the mobile communication system (500) comprising a mobile transceiver (400), the mobile transceiver (400) being located in the coverage area of the mobile relay station transceiver (100) and associated with the mobile relay station transceiver (100) while being in an idle mode, the idle mode being a state in which data transmission is inactive, the apparatus (10) being adapted for performing mobility related signaling towards the mobile communication system (500) communicating with the plurality of base station transceivers (300; 301; 302), and for generating a static network environment for the mobile transceiver (400) while the mobile transceiver (400) is associated to the mobile relay station transceiver (100),
摘要:
The invention relates to a process for preparing a (meth)acrylate copolymer containing tertiary amino groups by free-radical polymerization in solution from a monomer mixture selected from a) 30 to 70% by weight of a C1-C4-alkyl ester of acrylic acid or methacrylic acid and b) 70 to 30% by weight of an alkyl ester of acrylic acid or methacrylic acid with a tertiary amino group in the alkyl radical and c) 0 to 10% of further copolymerizable vinyl monomers, whereby one or more polymerization initiators, optionally one or more molecular weight regulators and one or more solvents or of a solvent mixture are added to the monomer mixture to give a polymerization mixture, which is polymerized at temperatures from 30 to 120° C. over a period of 2 to 24 hours, where the polymerization mixture is finally polymerized to give a polymerization syrup with a conversion of the monomers to the copolymer of at least 99% by weight, where the polymerization syrup is subsequently degassed by distillation or by extrusion and the degassed polymerization syrup is further comminuted to a copolymer preparation in the form of a granulate or powder, where the copolymer preparation is characterized by a molecular weight (Mw) of 25.000 to 75.000 g/mol a polydispersity index of 2.1 to 2.9 and a residual solvent concentration of less than 1.000 ppm by weight.
摘要:
The invention relates to a separator for crank housing ventilation of an internal combustion engine. The separator comprises at least one vortex chamber (2) extending along a longitudinal axis (3), wherein the vortex chamber (2) comprises an inlet for a ventilation stream (6), in particular a tangential inlet, relative to the longitudinal axis (3) at an end (4) on the inlet side. The vortex chamber (2) further comprises a common outlet (8) for the ventilation stream (6) and for oil entrained along with the ventilation stream (6), said common outlet being located at the end on the outlet side of the vortex chamber opposite the end (4) on the inlet side, relative to the longitudinal axis (3). The vortex chamber (2) is enclosed in the outlet (8) area thereof by an impact absorber (9) comprising an impact base (10) and a peripheral wall (11), wherein the impact base (10) covers the outlet (8) at a distance therefrom.