摘要:
The present invention provides a microbial cell capable of producing at least one terminal alkene from at least one short chain fatty acid, wherein the cell is genetically modified to comprise at least a first genetic mutation that increases the expression relative to the wild type cell of an enzyme (E1) selected from the CYP152 peroxygenase family, and at least a second genetic mutation that increases the expression relative to the wild type cell of at least one NAD(P)+ oxidoreductase (E2) and the corresponding mediator protein, wherein the short chain fatty acid is a C4-C10 fatty acid.
摘要:
The present invention provides a microbial cell capable of producing at least one terminal alkene from at least one short chain fatty acid, wherein the cell is genetically modified to comprise at least a first genetic mutation that increases the expression relative to the wild type cell of an enzyme (E1) selected from the CYP152 peroxygenase family, and at least a second genetic mutation that increases the expression relative to the wild type cell of at least one NAD(P)+ oxidoreductase (E2) and the corresponding mediator protein, wherein the short chain fatty acid is a C4-C10 fatty acid.
摘要:
A method for enzymatic preparation of compounds of the general formula (2) from unsaturated alkene derivatives of the general formula (1) by reducing a compound of the formula (1) in the presence of a reductase, comprising at least one of the polypeptide sequences SEQ ID NO: 1, 2 or 3 or having a functionally equivalent polypeptide sequence which is at least 80% identical to SEQ ID NO: 1, 2 or 3.
摘要翻译:一种通过在还原酶的存在下还原式(1)的化合物,从通式(1)的不饱和烯烃衍生物中酶制备通式(2)的化合物的方法,所述方法包括至少一种多肽序列 具有与SEQ ID NO:1,2或3至少80%相同的功能等同多肽序列的SEQ ID NO:1,2或3。
摘要:
A method for the enzymatic preparation of amino acids of the general formula (3) or (4) from alpha-dehydroamino acids of the general formula (1) or (2) wherein R1, R2 are independently of one another H, C1-C6 alkyl, C2-C6 alkenyl, an optionally substituted carbo- or heterocyclic, aromatic or nonaromatic radical, or an alkylaryl radical, or a carboxyl radical (—COOR), R3 is H, formyl, acetyl, propionyl, benzyl, benzyloxycarbonyl, BOC, Alloc, R is H, C1-C6 alkyl, aryl, by reducing a compound of the formula (1) or (2) in the presence of a reductase.
摘要:
A method for enzymatic preparation of compounds of the general formula (2) from unsaturated alkene derivatives of the general formula (1) by reducing a compound of the formula (1) in the presence of a reductase, comprising at least one of the polypeptide sequences SEQ ID NO: 1, 2 or 3 or having a functionally equivalent polypeptide sequence which is at least 80% identical to SEQ ID NO: 1, 2 or 3.
摘要翻译:一种通过在还原酶的存在下还原式(1)的化合物,从通式(1)的不饱和烯烃衍生物中酶制备通式(2)的化合物的方法,所述方法包括至少一种多肽序列 具有与SEQ ID NO:1,2或3至少80%相同的功能等同多肽序列的SEQ ID NO:1,2或3。
摘要:
In one embodiment the instant invention generally pertains to a method for producing glucose for fermentation. The method comprises first treating a biomass comprising a lignocellulosic material with a mixture comprising SO2 and steam at reaction conditions sufficient to produce a composition mixture comprising cellulose suitable for enzymatic hydrolysis. Specifically, the temperature, residence time, and SO2 concentration may be selected by calculating a crystallinity index (CrI) of the biomass and using the calculated crystallinity index as an indicator of enzymatic hydrolysis rate. In this manner cellulose may be enzymatically hydrolyzed glucose for aerobic or anaerobic fermentation.
摘要:
The present invention is a process for treating a feedstock comprising holocellulose. The process comprises mixing the feedstock with a solution comprising cellulose binding domains to form a mixture. The mixture is then subjected to conditions sufficient to reduce the crystallinity of holocellulose. Subsequent enzymatic hydrolysis may show an improved rate and/or fermentable sugar yield as compared to processes which do not employ the process.
摘要:
In one embodiment the instant invention generally pertains to a method for producing glucose for fermentation. The method comprises first treating a biomass with acid and heat under conditions sufficient to produce a composition mixture comprising cellulose suitable for enzymatic hydrolysis. Next, at least a portion of the cellulose of step (a) is enzymatically hydrolyzed under conditions sufficient to form a composition comprising glucose. The glucose is then fermented. Advantageously, one or more reaction conditions are more efficient because they are selected by first measuring an initial hydrolysis rate of said biomass and then selecting one or more appropriate reaction conditions based upon said initial hydrolysis rate.
摘要:
In one embodiment the instant invention generally pertains to a method for producing glucose for fermentation. The method comprises first treating a biomass with acid and heat under conditions sufficient to produce a composition mixture comprising cellulose suitable for enzymatic hydrolysis. Next, at least a portion of the cellulose of step (a) is enzymatically hydrolyzed under conditions sufficient to form a composition comprising glucose. The glucose is then fermented. Advantageously, one or more reaction conditions are more efficient because they are selected by first measuring an initial hydrolysis rate of said biomass and then selecting one or more appropriate reaction conditions based upon said initial hydrolysis rate.
摘要:
The present invention is a process for treating a feedstock comprising holocellulose. The process comprises mixing the feedstock with a solution comprising cellulose binding domains to form a mixture. The mixture is then subjected to conditions sufficient to reduce the crystallinity of holocellulose. Subsequent enzymatic hydrolysis may show an improved rate and/or fermentable sugar yield as compared to processes which do not employ the process.