摘要:
A fluid ejection device includes a fluid recirculation channel, and a drop generator disposed within the channel. A fluid slot is in fluid communication with each end of the channel, and a piezoelectric fluid actuator is located asymmetrically within the recirculation channel to cause fluid flow from the fluid slot, through the recirculation channel and drop generator, and back to the fluid slot.
摘要:
A fluid ejection device includes a fluid recirculation channel, and a drop generator disposed within the channel. A fluid slot is in fluid communication with each end of the channel, and a piezoelectric fluid actuator is located asymmetrically within the recirculation channel to cause fluid flow from the fluid slot, through the recirculation channel and drop generator, and back to the fluid slot.
摘要:
An electronic device of a preferred embodiment includes a tip emitter formed in a well defined in a substrate. An extractor disposed about the well extracts emissions from the tip emitter. A wide lens is spaced apart from the extractor for focusing the emissions through an opening defined the wide lens. The opening has a diameter greater than a diameter of the well. An aperture is disposed between the extractor and the wide lens.
摘要:
In an embodiment, a method of degassing ink in a fluid ejection device includes generating a localized nucleation site within an ejection chamber of a fluid ejection device. An air bubble is formed at the nucleation site, and the air bubble is prevented from venting into an ink supply slot using a bubble-impeding structure. The air bubble is vented through a nozzle associated with the ejection chamber and into the atmosphere.
摘要:
In an embodiment, a method of circulating fluid in a fluid ejection device includes generating compressive and expansive fluid displacements of different durations from a first actuator located asymmetrically within a fluidic channel between a first fluid feedhole and a nozzle while generating no fluid displacements from a second actuator located asymmetrically within the channel between the nozzle and a second fluid feedhole.
摘要:
In an embodiment, a fluid ejection device includes a die substrate having first and second fluid slots along opposite substrate sides and separated by a substrate central region. First and second internal columns of closed chambers are associated with the first and second slots, respectively, and the internal columns are separated by the central region. Fluidic channels extending across the central region fluidically couple closed chambers from the first internal column with closed chambers from the second internal column. Pump actuators in each closed chamber pump fluid through the channels from slot to slot.
摘要:
A drop detector assembly is provided including an ejection element to eject a fluid drop, a light guide to selectively receive light scattered off of the fluid drop, and a light detector formed in the light guide to detect light received by the light guide.
摘要:
A drop detector assembly includes an ejection element formed on a substrate to eject a fluid drop, and a light detector formed on the substrate to detect light scattered off of the fluid drop. A fluid drop ejected from a nozzle formed in a transparent nozzle plate scatters light that is detected through the transparent nozzle plate.
摘要:
A method for determining an issue with an inkjet nozzle using an impedance difference includes taking a first impedance measurement with a sensor to detect a drive bubble in an ink chamber after a drive bubble formation mechanism is activated; and subtracting the first impedance measurement from a reference.
摘要:
A fluid ejection assembly includes a fluid slot formed in a first substrate and a channel formed in a chamber layer disposed on top of a second substrate. The bottom surface of the second substrate is adhered to the top surface of the first substrate and fluid feed holes are formed between the fluid slot and the channel. A fluid ejection element is at a first end of the channel and a pump element is at a second end of the channel to circulate fluid horizontally through the channel and vertically through the fluid feed holes.