摘要:
A method for forming multiple resistors on a substrate. The method initially includes providing a first resistor on the substrate. A first dielectric layer is deposited, patterned, and selectively etched over the first resistor. Second resistor material is provided over the first dielectric layer. Furthermore, landing pad material is provided over the second resistor material. The landing pad material and the second resistor material are then selectively etched. The selective etching forms contacts for the first resistor in a first region, and forms a second resistor and associated contacts in a second region.
摘要:
A method of modifying a layer of thin film composite material to achieve one or more desired properties for the thin film layer which cannot be achieved by heat treatment at all practical temperatures of operation allowable by particular integrated circuit processes. In particular, the thin film composite material is subjected to an ion implantation process. Depending on the doping species, the doping concentration, the doping energy, and other ion implantation parameters, one or more properties of the deposited thin film resistive layer can be modified. Such properties may include electrical, optical, thermal and physical properties. For instance, the sheet resistance and/or the temperature coefficient of resistance of the thin film composite material may be increased or decreased by appropriately implanting ions into the material. The ion implantation can be applied globally in order to modify one or more properties of the entire deposited thin film composite layer. Alternatively, the ion implantation can be applied regionally in order to modify the thin film composite material at a first region, not modify the thin film composite material at a second region, and/or modify the thin film composite material in another way at a third region.
摘要:
Optical sensor devices, and methods of manufacturing the same, are described herein. In an embodiment, a monolithic optical sensor device includes a semiconductor substrate having a trench, with a photodetector region under said trench. An optical filter is formed in the trench and over at least a portion of the photodetector region. One or more metal structures extend above a top surface of said optical filter. The trench, photodetector region and optical filter are formed as part of a front-end-of-line (FEOL) semiconductor fabrication process. The one or more metal structures are formed as part of a back-end-of-line (BEOL) semiconductor fabrication process.