摘要:
In a projection objective for imaging a pattern arranged in the object plane of the projection objective into the image plane of the projection objective, at least one optical component is provided which has a substrate in which at least one substrate surface is covered with an interference layer system having a great spatial modulation of the reflectance and/or of the transmittance over a usable cross section of the optical component, the modulation being adapted to a spatial transmission distribution of the remaining components of the projection objective in such a way that an intensity distribution of the radiation that is measured in a pupil surface has a substantially reduced spatial modulation in comparison with a projection objective without the interference layer system.
摘要:
In a projection objective for imaging a pattern arranged in the object plane of the projection objective into the image plane of the projection objective, at least one optical component is provided which has a substrate in which at least one substrate surface is covered with an interference layer system having a great spatial modulation of the reflectance and/or of the transmittance over a usable cross section of the optical component, the modulation being adapted to a spatial transmission distribution of the remaining components of the projection objective in such a way that an intensity distribution of the radiation that is measured in a pupil surface has a substantially reduced spatial modulation in comparison with a projection objective without the interference layer system.
摘要:
The disclosure relates to a microlithographic projection exposure apparatus and a microlithographic projection exposure apparatus, as well as related components, methods and articles made by the methods. The microlithographic projection exposure apparatus includes an illumination system and a projection objective. The illumination system can illuminate a mask arranged in an object plane of the projection objective. The mask can have structures which are to be imaged. The method can include illuminating a pupil plane of the illumination system with light. The method can also include modifying, in a plane of the projection objective, the phase, amplitude and/or polarization of the light passing through that plane. The modification can be effected for at least two diffraction orders in mutually different ways. A mask-induced loss in image contrast obtained in the imaging of the structures can be reduced compared to a method without the modification.
摘要:
The disclosure relates to a microlithographic projection exposure apparatus and a microlithographic projection exposure apparatus, as well as related components, methods and articles made by the methods. The microlithographic projection exposure apparatus includes an illumination system and a projection objective. The illumination system can illuminate a mask arranged in an object plane of the projection objective. The mask can have structures which are to be imaged. The method can include illuminating a pupil plane of the illumination system with light. The method can also include modifying, in a plane of the projection objective, the phase, amplitude and/or polarization of the light passing through that plane. The modification can be effected for at least two diffraction orders in mutually different ways. A mask-induced loss in image contrast obtained in the imaging of the structures can be reduced compared to a method without the modification.
摘要:
The disclosure relates to a microlithographic projection exposure apparatus and a microlithographic projection exposure apparatus, as well as related components, methods and articles made by the methods. The microlithographic projection exposure apparatus includes an illumination system and a projection objective. The illumination system can illuminate a mask arranged in an object plane of the projection objective. The mask can have structures which are to be imaged. The method can include illuminating a pupil plane of the illumination system with light. The method can also include modifying, in a plane of the projection objective, the phase, amplitude and/or polarization of the light passing through that plane. The modification can be effected for at least two diffraction orders in mutually different ways. A mask-induced loss in image contrast obtained in the imaging of the structures can be reduced compared to a method without the modification.
摘要:
The disclosure relates to a microlithographic projection exposure apparatus and a microlithographic projection exposure apparatus, as well as related components, methods and articles made by the methods. The microlithographic projection exposure apparatus includes an illumination system and a projection objective. The illumination system can illuminate a mask arranged in an object plane of the projection objective. The mask can have structures which are to be imaged. The method can include illuminating a pupil plane of the illumination system with light. The method can also include modifying, in a plane of the projection objective, the phase, amplitude and/or polarization of the light passing through that plane. The modification can be effected for at least two diffraction orders in mutually different ways. A mask-induced loss in image contrast obtained in the imaging of the structures can be reduced compared to a method without the modification.
摘要:
An optical imaging system for a microlithography projection exposure system is used for imaging an object field arranged in an object plane of the imaging system into an image field arranged in an image plane of the imaging system. A projection objective or a relay objective to be used in the illumination system can be involved, in particular. The imaging system has a plurality of lenses that are arranged between the object plane and the image plane and in each case have a first lens surface and a second lens surface. At least one of the lenses is a double aspheric lens where the first lens surface and the second lens surface is an aspheric surface. Lenses of good quality that have the action of an asphere with very strong deformation can be produced in the case of double aspheric lenses with an acceptable outlay as regards the surface processing and testing of the lens surfaces.
摘要:
An optical imaging system for a microlithography projection exposure system is used for imaging an object field arranged in an object plane of the imaging system into an image field arranged in an image plane of the imaging system. A projection objective or a relay objective to be used in the illumination system can be involved, in particular. The imaging system has a plurality of lenses that are arranged between the object plane and the image plane and in each case have a first lens surface and a second lens surface. At least one of the lenses is a double aspheric lens where the first lens surface and the second lens surface is an aspheric surface. Lenses of good quality that have the action of an asphere with very strong deformation can be produced in the case of double aspheric lenses with an acceptable outlay as regards the surface processing and testing of the lens surfaces.
摘要:
A projection exposure system is proposed which is positionable between a first object and a second object for imaging the first object in a region of the second object with light of a wavelength band having a width &dgr;&lgr; about a central working wavelength &lgr;, wherein a relative width &dgr;&lgr;/&lgr; of the wavelength band is larger than 0.002, in particular, larger than 0.005, for example, of the Hg-I-line. The projection exposure system is a so-called three-bulge system comprising three bulges having, as a whole, a positive refractive power and two waists having, as a whole, a negative refractive power. By applying suitable measures, in particular, by suitably selecting the material for the lenses forming the projection exposure system, the long-term stability of the system is increased.
摘要:
The invention relates to a projection objective (6), in particular for applications in microlithography, serving to project an image of an object (3) arranged in an object plane (4) onto a substrate (18) arranged in an image plane (7). The projection objective (6) has an object-side-oriented part (10) which is arranged adjacent to the object plane (4) and includes a plurality of optical elements, and it also has an image-side-oriented part (11) of the objective which is arranged adjacent to the image plane (7) and includes a free space (16) serving to receive a fluid (13) and further includes at least a part of an optical end-position element (14) serving to delimit the free space (16) towards the object side. The projection objective (6) is operable in different modes of operation in which the free space (16) is filled with fluids (13) that differ in their respective indices of refraction.