摘要:
A first device is described. The first device may include a linear transformation circuit to implement multiplication by a matrix D. The linear transformation circuit may have an input to receive a vector having N digital values and an output to output N first output signals, a sign-adjustment circuit to adjust signs of a subset including at least M of the N first output signals in accordance with a set of coefficients H, and a conversion (DAC) circuit coupled to the sign-adjustment circuit. Outputs from the DAC circuit may be summed to produce an output.
摘要:
A first device includes a linear transformation circuit to implement multiplication by a matrix D. The linear transformation circuit as an input to receive a vector having N digital values and an output to output N first output signals. The linear transformation circuit optionally includes a sign-adjustment circuit to adjust signs of a subset including at least M of the N first output signals in accordance with a set of coefficients H. The linear transformation circuit includes a digital-to-analog conversion (DAC) circuit coupled to the output of the sign-adjustment circuit. Outputs from the DAC circuit are summed to produce an output.
摘要:
A first device is described. The first device may include a linear transformation circuit to implement multiplication by a matrix D. The linear transformation circuit may have an input to receive a vector having N digital values and an output to output N first output signals, a sign-adjustment circuit to adjust signs of a subset including at least M of the N first output signals in accordance with a set of coefficients H, and a conversion (DAC) circuit coupled to the sign-adjustment circuit. Outputs from the DAC circuit may be summed to produce an output.
摘要:
A transform circuit includes a first circuit and a second circuit. The first circuit and the second circuit implement first and second mappings that together generate a pre-defined transform of N digital data symbols. The first circuit maps a set of N digital data symbols from N parallel data streams to N analog data symbols by generating N sets of first weighted sums of the N digital data symbols. Each respective first weighted sum is defined by a respective set of pre-determined first weighting values in a first matrix. The second circuit maps the N analog data symbols to a sequence of N output signals over N time intervals. Each of the N output signals corresponds to a respective second weighted sum of the N analog data symbols. Each respective second weighted sum is defined by a respective set of pre-determined second weighting values in a second matrix.
摘要:
Encoder and decoder circuits that encode and decode a series of data words to/from a series of code words. The data words include L symbols. The code words include M symbols, where M is larger than L. A set of tightly coupled M links to convey respective symbols in each of the series of code words. The code words are selected such that between every two consecutive code words in a series of code words, an equal number of transitions from low to high and high to low occur on a subset of the M-links.
摘要:
The frequency response of a first component signal path of a differential signaling link is adjusted to off-set a notch in the frequency response from a corresponding notch in the frequency response of a second component signal path of the differential signaling link.
摘要:
A decision feedback equalizer is calibrated to compensate for estimated inter-symbol interference in a received signal and offsets of sampling devices. The decision feedback equalizer is configured so that an output signal of a sampling circuit represents a comparison between an input signal and a reference of the sampling circuit under calibration. An input signal is received over a communication channel that includes a predetermined pattern. The predetermined pattern is compared to the output signal to determine an adjusted reference for configuring the sampling circuit that accounts for both offset and inter-symbol interference effects.
摘要:
A receiver includes an amplifier and a transconductance bias circuit. The amplifier gain is largely determined by transconductance and load impedance. The transconductance bias circuit varies the transconductance in inverse proportion to the load impedance to maintain the gain over process, voltage, and temperature. Differential amplifiers can use separate transconductance bias circuits for each amplifier leg, and the bias circuits can be independently controlled to minimize common-mode gain and voltage offsets.
摘要:
A data transmission circuit comprises a plurality of data preparation circuits and a combiner. Each data preparation circuit receives a respective data stream and generates a respective sub-channel signal. Each respective data stream has a respective symbol rate and a respective Nyquist bandwidth. The combiner combines the respective sub-channel signals to generate a data transmission signal having an associated bandwidth. The bandwidth associated with the data transmission signal is greater than or equal to the sum of the Nyquist bandwidths for the respective data streams. Each data preparation circuit comprises a programmable linear equalizer that equalizes the respective sub-channel signal across the bandwidth of the data transmission signal.
摘要:
A decision feedback equalizer is calibrated to compensate for estimated inter-symbol interference in a received signal and offsets of sampling devices. The decision feedback equalizer is configured so that an output signal of a sampling circuit represents a comparison between an input signal and a reference of the sampling circuit under calibration. An input signal is received over a communication channel that includes a predetermined pattern. The predetermined pattern is compared to the output signal to determine an adjusted reference for configuring the sampling circuit that accounts for both offset and inter-symbol interference effects.