摘要:
A method for improving channel carrier mobility in ultra-thin Silicon-on-oxide (UTSOI) FET devices by integrating an embedded pFET SiGe extension with raised source/drain regions. The method includes selectively growing embedded SiGe (eSiGe) extensions in pFET regions and forming strain-free raised Si or SiGe source/drain (RSD) regions on CMOS. The eSiGe extension regions enhance hole mobility in the pFET channels and reduce resistance in the pFET extensions. The strain-free raised source/drain regions reduce contact resistance in both UTSOI pFETs and nFETs.
摘要:
A method for improving channel carrier mobility in ultra-thin Silicon-on-oxide (UTSOI) FET devices by integrating an embedded pFET SiGe extension with raised source/drain regions. The method includes selectively growing embedded SiGe (eSiGe) extensions in pFET regions and forming strain-free raised Si or SiGe source/drain (RSD) regions on CMOS. The eSiGe extension regions enhance hole mobility in the pFET channels and reduce resistance in the pFET extensions. The strain-free raised source/drain regions reduce contact resistance in both UTSOI pFETs and nFETs.
摘要:
A method for improving channel carrier mobility in ultra-thin Silicon-on-oxide (UTSOI) FET devices by integrating an embedded pFET SiGe extension with raised source/drain regions. The method includes selectively growing embedded SiGe (eSiGe) extensions in pFET regions and forming strain-free raised Si or SiGe source/drain (RSD) regions on CMOS. The eSiGe extension regions enhance hole mobility in the pFET channels and reduce resistance in the pFET extensions. The strain-free raised source/drain regions reduce contact resistance in both UTSOI pFETs and nFETs.
摘要:
A method for improving channel carrier mobility in ultra-thin Silicon-on-oxide (UTSOI) FET devices by integrating an embedded pFET SiGe extension with raised source/drain regions. The method includes selectively growing embedded SiGe (eSiGe) extensions in pFET regions and forming strain-free raised Si or SiGe source/drain (RSD) regions on CMOS. The eSiGe extension regions enhance hole mobility in the pFET channels and reduce resistance in the pFET extensions. The strain-free raised source/drain regions reduce contact resistance in both UTSOI pFETs and nFETs.
摘要:
A semiconductor fabrication method. The method includes providing a semiconductor substrate, wherein the semiconductor substrate includes a semiconductor material. Next, a top portion of the semiconductor substrate is removed. Next, a first semiconductor layer is epitaxially grown on the semiconductor substrate, wherein a first atomic percent of a first semiconductor material in the first semiconductor layer is equal to a substrate atomic percent of the substrate semiconductor material in the semiconductor substrate.
摘要:
A semiconductor fabrication method. The method includes providing a semiconductor substrate, wherein the semiconductor substrate includes a semiconductor material. Next, a top portion of the semiconductor substrate is removed. Next, a first semiconductor layer is epitaxially grown on the semiconductor substrate, wherein a first atom percent of the semiconductor material in the first semiconductor layer is equal to a certain atom percent of the semiconductor material in the semiconductor substrate.
摘要:
A method is provided to fabricate a semiconductor device, where the method includes providing a substrate comprised of crystalline silicon; implanting a ground plane in the crystalline silicon so as to be adjacent to a surface of the substrate, the ground plane being implanted to exhibit a desired super-steep retrograde well (SSRW) implant doping profile; annealing implant damage using a substantially diffusionless thermal annealing to maintain the desired super-steep retrograde well implant doping profile in the crystalline silicon and, prior to performing a shallow trench isolation process, depositing a silicon cap layer over the surface of the substrate. The substrate may be a bulk Si substrate or a Si-on-insulator substrate. The method accommodates the use of an oxynitride gate stack structure or a high dielectric constant oxide/metal (high-K/metal) gate stack structure. The various thermal processes used during fabrication are selected/controlled so as to maintain the desired super-steep retrograde well implant doping profile in the crystalline silicon.
摘要:
Metal-oxide semiconductor field effect transistor (MOSFET) devices having metal gate stacks and techniques for improving performance thereof are provided. In one aspect, a metal-oxide semiconductor device is provided comprising a substrate having a buried oxide layer at least a portion of which is configured to serve as a primary background oxygen getterer of the device; and a gate stack separated from the substrate by an interfacial oxide layer. The gate stack comprises a high-K layer over the interfacial oxide layer; and a metal gate layer over the high-K layer.
摘要:
A thin-body SOI CMOS structure and method for fabricating thin-body SOI CMOS structures with Si channels for NFETs and SiGe/Si or SiGe channels for PFETs. The CMOS structure imparts beneficial channel stress to PFETs while not degrading NFETs and leading to beneficial higher gate capacitance for PFETs.
摘要:
Metal-oxide semiconductor field effect transistor (MOSFET) devices having metal gate stacks and techniques for improving performance thereof are provided. In one aspect, a metal-oxide semiconductor device is provided comprising a substrate having a buried oxide layer at least a portion of which is configured to serve as a primary background oxygen getterer of the device; and a gate stack separated from the substrate by an interfacial oxide layer. The gate stack comprises a high-K layer over the interfacial oxide layer; and a metal gate layer over the high-K layer.