Abstract:
Systems, methods and devices are presented for extracting target particles within a ferrofluid medium. In some embodiments, a fluidic channel receives a flow of a mix of one or more types of target particles, where at least one magnetic field source is configured to react with the flow such that a force (indirect or direct) is placed on the particles of the mix, across the width and/or the height of the fluidic channel. An extraction opening placed on one wall is provided and configured to extract at least one type of target particle.
Abstract:
A system for determining drug effectiveness on a plurality of cells is described. The system includes flowing a ferrofluid mixed with a plurality of biological cells through an inlet portion of a cartridge, the cartridge comprising a plurality of microfluidic channels, the inlet is in communication with a portion of each of the plurality of channels, applying a magnetic field proximate at least one of the inlet portion and the plurality of micro-channels, wherein the magnetic field is configured to apply an indirect force on the mix, separating biologic cells according to at least a first type as the mix flows in a first direction; and directing at least the first type of cells toward a first sensor functionalized with receptors via at least one of the micro-channels, the sensor arranged proximate to a second portion of at least one of the micro-channels downstream from the first inlet portion.
Abstract:
A device and method for extracting particles contained in a ferrofluid medium are provided. Such methods may comprise suspending particles of different sizes in a ferrofluid medium and containing the ferrofluid medium in a cylindrical reservoir, and applying a first magnetic field to at least a portion of the reservoir. The first magnetic field is configured to indirectly exert a force on at least a portion of the particles of a predetermined size, and direct the portion of particles in a desired direction.
Abstract:
Some embodiments of the present disclosure are directed to systems and methods for separating, directing, and/or extracting a target molecule from a mix of molecules and may comprise a plurality of non-magnetic beads suspended in a ferro fluid, where the non-magnetic beads may be functionalized with at least one predetermined first molecule configured to bind with a target particle. A microfluidic device may be included which may comprise at least one microfluidic channel, the device configured to dynamically and/or statically receive an amount of the mix. Magnetic field means may be included and may be configured to apply a magnetic field to at least a portion of the at least one channel to exert an indirect force on the non-magnetic beads in the ferro fluid mix, and separate the non-magnetic beads from the ferrofluid. The beads may then be directed to at least one receptor region. At least one outlet may be provided which is arranged to be in communication with the at least one microfluidic channel, the at least one outlet may be configured to receive and extract the separated non-magnetic beads from the ferrofluid.
Abstract:
A system for determining drug effectiveness on a plurality of cells is described. The system includes flowing a ferro-fluid mixed with a plurality of biological cells through an inlet portion of a cartridge, the cartridge comprising a plurality of micro-fluidic channels, the inlet is in communication with a portion of each of the plurality of channels, applying a magnetic field proximate at least one of the inlet portion and the plurality of micro-channels, wherein the magnetic field is configured to apply an indirect force on the mix, separating biologic cells according to at least a first type as the mix flows in a first direction; and directing at least the first type of cells toward a first sensor functionalized with receptors via at least one of the micro-channels, the sensor arranged proximate to a second portion of at least one of the micro-channels downstream from the first inlet portion.
Abstract:
Devices, methods, and systems are provided for extracting particles from a ferrofluid and for rapid affinity measurements. Such systems may comprise a fluidic channel or chamber configured to include a ferrofluid having a plurality of target particles and background particles. The systems may include a capture region configured to capture at least a portion of the plurality of target particles. In addition, the systems include a first magnetic field generator and a second magnetic field generator. The first magnetic field generator may be arranged proximate to the fluidic channel, the first magnetic field generator being configured to generate a first magnetic field configured to direct the plurality of target particles towards the capture region. The second magnetic field generator can be arranged to be proximate to the capture region, and is further configured to generate an affinity thresholding magnetic field configured to remove background particles from the capture region.
Abstract:
Some embodiments of the present disclosure are directed to systems and methods for separating, directing, and/or extracting a target molecule from a mix of molecules and may comprise a plurality of non-magnetic beads suspended in a ferro fluid, where the non-magnetic beads may be functionalized with at least one predetermined first molecule configured to bind with a target particle. A microfluidic device may be included which may comprise at least one microfluidic channel, the device configured to dynamically and/or statically receive an amount of the mix. Magnetic field means may be included and may be configured to apply a magnetic field to at least a portion of the at least one channel to exert an indirect force on the non-magnetic heads in the ferro fluid mix, and separate the non-magnetic beads from the ferrofluid. The beads may then be directed to at least one receptor region. At least one outlet may be provided which is arranged to be in communication with the at least one microfluidic channel, the at least one outlet may be configured to receive and extract the separated non-magnetic beads from the ferrofluid.
Abstract:
A device for determining the identity and concentration of target particles within a biocompatible ferrofluid medium is described. The system includes a fluidic channel that a sample of particles flow through; at least one magnetic field source configured to react repulsively with the particles; a channel wall with at least one receptor regions placed serially along the flow direction; and at least one thin electrode placed between the receptor regions to track changes in local impedance every time a target particle passes through the fluidic channel in close proximity.
Abstract:
A device and method for extracting particles contained in a ferrofluid medium are provided. Such methods may comprise suspending particles of different sizes in a ferrofluid medium and containing the ferrofluid medium in a cylindrical reservoir, and applying a first magnetic field to at least a portion of the reservoir. The first magnetic field is configured to indirectly exert a force on at least a portion of the particles of a predetermined size, and direct the portion of particles in a desired direction.
Abstract:
Systems, methods and devices are presented for extracting target particles within a ferrofluid medium. In some embodiments, a fluidic channel receives a flow of a mix of one or more types of target particles, where at least one magnetic field source is configured to react with the flow such that a force (indirect or direct) is placed on the particles of the mix, across the width and/or the height of the fluidic channel. An extraction opening placed on one wall is provided and configured to extract at least one type of target particle.