摘要:
An endpoint element of a distributed antenna system includes processing circuitry configured for processing a plurality of digital signals for conditioning the signals and compression circuitry configured for compressing at least one of the digital signals according to a compression scheme to yield at least one compressed digital signal and compression settings. The digital signals are combined into a single digital stream and combined and time division multiplexed onto a serial data link with the compression settings. The digital signals are also transmitted with compression settings to another endpoint element over the serial data link.
摘要:
A telecommunications system is provided that includes a unit for communicating channelized digital baseband signals with remotely located units. The channelized digital baseband signals include call information for wireless communication. The unit includes a channelizer section and a transport section. The channelizer section can extract, per channel, the channelized digital baseband signals using channel filters and digital down-converters. The transport section can format the channelized digital baseband signals for transport together using a transport schedule unit for packetizing and packet scheduling the channelized digital baseband signals. A signal processing subsystem can control a gain of uplink digital baseband signals, independently, that are received from the remotely located units prior to summing the uplink digital baseband signals.
摘要:
A system and method of monitoring a signal repeating device in a wireless communication system is provided. An operational noise measurement is obtained by measuring a noise value outside of a bandwidth of a first element, but within a bandwidth of a second, subsequent element in a signal path of the device. The operational noise measurement is alternatively obtained by tuning an input band of the device to shift the input band partially or completely outside of a bandwidth of a first element to create an open band or by suppressing an input of an antenna and measuring noise within the open bandwidth of the device. A stored parameter is retrieved and compared to the measured operational noise. Alternatively, a leakage signal of the device may be received at a signal receiver and compared to a reference. The reference is a function of elements of the device in a leakage path of the leakage signal.
摘要:
Systems and methods are provided for automatically detecting passive components in communications systems using radio frequency identification (“RFID”) tags. A coupling circuit is provided in a system between a communications network and an RFID tag. The RFID tag is associated with a passive element of a distributed antenna system (“DAS”). The coupling circuit can allow an RFID signal received from an RFID transmitter over the communications network to be transported to the RFID tag. The coupling circuit can substantially prevent mobile communication signals on the communications network from being transported to the RFID tag.
摘要:
A PoE powered device and method of operation are provided. The device includes a first port unit configured to negotiate receipt of a level of PoE power from a power sourcing equipment. The power is received on a first pair of taps on a first communication port. A detection unit is configured to detect a presence of a first optional circuit load and to detect a presence of a second optional power load. A control circuit is configured to establish connectivity between a second pair of taps on the first communication port and a second powered device port unit in response to the detection unit detecting the first optional load, and further configured to establish connectivity between the second pair of taps and a third pair of taps on a pass-through communication port in response to the detection unit failing to detect the first load and detecting the second load.
摘要:
Canceling narrowband interfering signals in a distributed antenna system is provided. In one aspect, a cancellation sub-system includes a decimator module, a filter, an interpolator module, and a combiner module coupled to the uplink path and a reference path in parallel with the uplink path. The reference path includes the decimator module, the filter, and the interpolator module. The decimator module decimates a reference signal sampled from an uplink signal traversing an uplink path of the remote antenna unit. Each of the uplink signal and the reference signal includes a narrowband interfering signal component. The filter generates a cancellation signal from the reference signal by attenuating the reference signal outside a frequency band that includes the interfering signal component. The interpolator module interpolates the cancellation signal to a sampling rate of the uplink signal. The combiner module can subtract the cancellation signal from the uplink signal.
摘要:
A radio communication system includes at least one receive antenna for receiving communication signals, processing circuitry for processing the received communication signals and repeating the signals for further transmission, and at least one transmit antenna for transmitting the repeated signals. The processing circuitry is operable for receiving an input regarding the current geographic location of the communication system. The processing circuitry is further capable of recording measurements and data regarding the operation and use of the radio communication system and its operating environment including where and when the measurements and data were taken. The processing circuitry further provides a user interface and capabilities to analyze and visualize the recorded information to diagnose problems and optimize performance. Additionally, the recorded information can be transmitted to a remote server where can be used to determine optimal operational settings for other radio communication systems when they are operating in the same location where the measurements were taken, and these operational settings can be transmitted to these other radio communications systems prior to their use in these locations.
摘要:
A system and method of monitoring a signal repeating device in a wireless communication system is provided. An operational noise measurement is obtained by measuring a noise value outside of a bandwidth of a first element, but within a bandwidth of a second, subsequent element in a signal path of the device. The operational noise measurement is alternatively obtained by tuning an input band of the device to shift the input band partially or completely outside of a bandwidth of a first element to create an open band or by suppressing an input of an antenna and measuring noise within the open bandwidth of the device. A stored parameter is retrieved and compared to the measured operational noise. Alternatively, a leakage signal of the device may be received at a signal receiver and compared to a reference. The reference is a function of elements of the device in a leakage path of the leakage signal.
摘要:
A signal repeating system for a wireless network includes signal repeating circuitry defining an uplink path for processing signals repeated between endpoints. The signal repeating circuitry includes circuitry for selectively varying at least one parameter of the signals that are processed in the uplink path. Circuitry evaluates how signals received in the uplink path of the signal repeating system respond to the variation of the signal parameter. Processing circuitry is configured for comparing a signal associated with the variation of the signal parameter with the evaluated response to determine if the variation causes a change in the uplink path signal response for detecting traffic in the uplink path.
摘要:
A signal repeating system for a wireless network includes an antenna configured for transceiving signals between a base station and a user equipment device. Repeating circuitry is coupled to the antenna and defines an uplink path for signals from the user equipment device to the base station and a downlink path for signals from the base station to the user equipment device. The repeating circuitry includes gain circuitry and gain control circuitry that is coupled to the gain circuitry. The gain control circuitry is operable for varying the gain of the repeating circuitry according to a waveform. Measurement circuitry measures the receive power in the uplink path over time from the user equipment device. Processing circuitry cross-correlates the inverted gain variation waveform with the measured receive power for determining the existence of traffic from user equipment devices in the uplink path.