摘要:
A stressed field effect transistor and methods for its fabrication are provided. The field effect transistor comprises a silicon substrate with a gate insulator overlying the silicon substrate. A gate electrode overlies the gate insulator and defines a channel region in the silicon substrate underlying the gate electrode. A first silicon germanium region having a first thickness is embedded in the silicon substrate and contacts the channel region. A second silicon germanium region having a second thickness greater than the first thickness and spaced apart from the channel region is also embedded in the silicon substrate.
摘要:
A method is provided for fabricating a semiconductor device on a semiconductor substrate. A plurality of narrow gate pitch transistors (NPTs) and wide gate pitch transistors (WPTs) are formed on and in the semiconductor substrate. The NPTs are spaced apart by a first distance, and the WPTs are spaced apart by a second distance greater than the first distance. A first stress liner layer is deposited overlying the NPTs, the WPTs and the semiconductor layer, an etch stop layer is deposited overlying the first stress liner layer, and a second stress liner layer is deposited overlying the etch stop layer. A portion of the second stress liner layer which overlies the WPTs is covered, and an exposed portion of the second stress liner layer which overlies the NPTs is removed to expose an exposed portion of the etch stop layer. The exposed portion of the etch stop layer which overlies the NPTs is removed.
摘要:
A method for fabricating a MOSFET (e.g., a PMOS FET) includes providing a semiconductor substrate having surface characterized by a (110) surface orientation or (110) sidewall surfaces, forming a gate structure on the surface, and forming a source extension and a drain extension in the semiconductor substrate asymmetrically positioned with respect to the gate structure. An ion implantation process is performed at a non-zero tilt angle. At least one spacer and the gate electrode mask a portion of the surface during the ion implantation process such that the source extension and drain extension are asymmetrically positioned with respect to the gate structure by an asymmetry measure.
摘要:
A metal oxide semiconductor transistor device having a reduced gate height is provided. One embodiment of the device includes a substrate having a layer of semiconductor material, a gate structure overlying the layer of semiconductor material, and source/drain recesses formed in the semiconductor material adjacent to the gate structure, such that remaining semiconductor material is located below the source/drain recesses. The device also includes shallow source/drain implant regions formed in the remaining semiconductor material, and epitaxially grown, in situ doped, semiconductor material in the source/drain recesses.
摘要:
According to a method for fabricating a stress enhanced MOS device having a channel region at a surface of a semiconductor substrate, first and second trenches are etched into the semiconductor substrate, the first trench having a first side surface, and the second trench having a second side surface. The first and second side surfaces are formed astride the channel region. The first and second side surfaces are then oxidized in a controlled oxidizing environment to thereby grow an oxide region. The oxide region is then removed, thereby repositioning the first and second side surfaces closer to the channel region. With the first and second side surfaces repositioned, the first and second trenches are filled with SiGe.
摘要:
A method is provided for fabricating a strained MOS device having a silicon germanium on insulator (SGOI) substrate that includes a layer of monocrystalline silicon germanium material characterized by a first lattice constant. A strained silicon layer is formed over the layer of monocrystalline silicon germanium material. A layer of gate electrode material is patterned to form a gate electrode overlying a channel region. The strained silicon layer is disposed between the gate electrode and the channel region. First recess and second recesses are etched into the layer of monocrystalline silicon germanium material. A layer of monocrystalline semiconductor material is then epitaxially grown to fill the first and second recesses such that it is embedded at the opposing sides of the channel region. The layer of monocrystalline semiconductor material comprises silicon and germanium, and is characterized by a second lattice constant less than the first lattice constant.
摘要:
A method of fabricating a semiconductor device is provided. The method forms a fin arrangement on a semiconductor substrate, the fin arrangement comprising one or more semiconductor fin structures. The method continues by forming a gate arrangement overlying the fin arrangement, where the gate arrangement includes one or more adjacent gate structures. The method proceeds by forming an outer spacer around sidewalls of each gate structure. The fin arrangement is then selectively etched, using the gate structure and the outer spacer(s) as an etch mask, resulting in one or more semiconductor fin sections underlying the gate structure(s). The method continues by forming a stress/strain inducing material adjacent sidewalls of the one or more semiconductor fin sections.
摘要:
Methods for fabricating semiconductor structures, such as fin structures of FinFET transistors, are provided. In one embodiment, a method comprises providing a semiconductor substrate and forming a plurality of mandrels overlying the semiconductor substrate. Each of the mandrels has sidewalls. L-shaped spacers are formed about the sidewalls of the mandrels. Each L-shaped spacer comprises a rectangular portion disposed at a base of a mandrel and an orthogonal portion extending from the rectangular portion. Each L-shaped spacer also has a spacer width. The orthogonal portions are removed from each of the L-shaped spacers leaving at least a portion of the rectangular portions. The semiconductor substrate is etched to form fin structures, each fin structure having a width substantially equal to the spacer width.
摘要:
A method of fabricating a semiconductor device structure is provided. The method begins by providing a substrate having a layer of semiconductor material, a pad oxide layer overlying the layer of semiconductor material, and a pad nitride layer overlying the pad oxide layer. The method proceeds by selectively removing a portion of the pad nitride layer, a portion of the pad oxide layer, and a portion of the layer of semiconductor material to form an isolation trench. Then, the isolation trench is filled with a lower layer of isolation material, a layer of etch stop material, and an upper layer of isolation material, such that the layer of etch stop material is located between the lower layer of isolation material and the upper layer of isolation material. The layer of etch stop material protects the underlying isolation material during subsequent fabrication steps.
摘要:
A metal oxide semiconductor transistor device having a reduced gate height is provided. One embodiment of the device includes a substrate having a layer of semiconductor material, a gate structure overlying the layer of semiconductor material, and source/drain recesses formed in the semiconductor material adjacent to the gate structure, such that remaining semiconductor material is located below the source/drain recesses. The device also includes shallow source/drain implant regions formed in the remaining semiconductor material, and epitaxially grown, in situ doped, semiconductor material in the source/drain recesses.