摘要:
Dispersed Active Metal catalyst for hydrogenation reactions is produced by treating a substantially catalytically inactive metal particulate with a solution capable of oxidizing the metal particulate and comprising of at least one compound of a hydrogenation catalyst metal thereby forming a layer of at least one of hydroxides and oxides thereon. The metal particulate is activated by treatment with a hydrogen-containing gas at elevated temperatures to form a porous layer of Dispersed Active Metal catalyst. Preferably, the treated metal particulate is dried prior to activation, and also preferably calcined in an oxidant-containing atmosphere prior to activation. The treatment solution may advantageously contain a compound of at least one promoter metal for the added catalyst metal. The porosity of the layer provides enhanced catalyst activity as well as improved methane selectivity in the Fischer-Tropsch process.
摘要:
A process for enhancing the activity of a catalyst metal particulate for hydrogenation reactions comprising calcining the particulate in an oxidant-containing atmosphere to partially oxidize it thereby forming a porous layer of oxides thereon, treating with an solution capable of oxidizing the calcined metal particulate and comprising a compound of a hydrogenation catalyst metal to where said metal particulate has absorbed a volume of solution equal to at least about 10% of its calculated pore volume and activating it by treatment with a hydrogen-containing gas at elevated temperatures thereby forming a dispersed active metal catalyst. Preferably, the treated particulate is calcined a second time under the same conditions as the first before final activation with a hydrogen-containing gas. The metal particulate is preferably sized after each calcination and any agglomerates larger than 250 microns are comminuted to a desired size.
摘要:
Olefin is etherified with alcohol to provide an ether or mixture of ethers employing catalyst comprising zeolite characterized by an X-ray diffraction pattern including interplanar d-spacings at 12.36+0.4, 11.03+0.2, 8.83.+-.0.14, 6.18.+-.0.12, 6.00.+-.0.10, 4.06.+-.0.07, 3.91.+-.0.07 and 3.42.+-.0.06 Angstroms.
摘要:
A process is disclosed for the production of alkyl tertiary alkyl ether from alkanol and iso-olefin employing zeolite catalyst, particularly zeolite Beta, that results is a high ether selectivity and a significant reduction in the formation of olefin oligomer by-product. The improvement is realized by incorporating a catalyst pretreatment step in the overall etherification process. The zeolite catalyst pretreatment comprises either steaming or a hydrothermal treatment using liquid water at elevated temperature. The process is particularly effective in reducing the formation of dimer by-product in the zeolite Beta catalyzed process for the formation of MTBE with high selectivity.
摘要:
A process for synthesizing di-isopropyl ether (DIPE) by etherification of isopropanol. A multi-stage process can employ propene in mixture with other feedstock materials, such as propane from refinery gas, in a primary hydration stage to produce isopropanol. The isopropanol is enriched between stages to remove water. In the second reaction stage the isopropanol is converted catalytically with large pore acidic zeolite to yield DIPE, which can be separated to recover pure propene.
摘要:
A process is disclosed for converting a light hydrocarbon feedstock that contains a mixture of linear and branched olefins to ether-rich high octane gasoline streams that include tertiary alkyl and isoalkyl ethers such as MTBE, TAME, methyl isopropyl ether (MIPE), and methyl sec-butylether (MSBE). The conversion is achieved by utilizing the differing reactivity of tertiary olefins under selected conditions compared to linear olefins in the catalyzed etherification processes. The discovery has been made that unreacted olefins from the etherification reactions can be converted to gasoline boiling range hydrocarbons by contacting them with zeolite catalyst at elevated temperature. Further, it has been discovered that unreacted paraffins in the integrated process can be dehydrogenated to produce C.sub.3 -C.sub.4 olefins which can be recycled to the etherification process.
摘要:
A novel Fischer Tropsch iron catalyst that has unusually high selectivity for liquid hydrocarbons (low selectivity for methane) is provided. The catalyst is prepared by treatment of the usual inactive catalyst precursor with water vapor at elevated temperature either after conventional activation by syngas or concurrently therewith. Surprisingly, the "selectivation" with water vapor does not affect catalytic activity. The novel "selectivated" catalyst may be used to advantage either to increase temperature and throughput, or to increase liquid hydrocarbon selectivity, compared with conventional catalyst that has not been "selectivated".
摘要:
A condensation reaction process and reactor for converting a plurality of reactants to at least one reaction product having a vapor pressure less than the vapor pressure of the reactants. The process includes heating a liquid phase of the reactants to at least partial vaporization thus forming a vapor phase of the reactants. The vapor phase reactants are passed in a vapor and or condensed state through at least one catalyst bed spaced from the liquid state to form reaction product(s). The reaction product(s) is returned to the liquid phase without additional contact with catalyst.
摘要:
Porous metallosilicate catalyst (e.g. Zeolite Beta) is active at low temperature for converting lower alkanol (e.g. methanol) and C.sub.4 -C.sub.7 tertiary alkenes to high octane ether product. Such catalytic reaction is especially useful in multizone catalytic reactor systems employing catstill rectification.
摘要:
A multistaged fixed catalyst bed process for the production of diisopropyl ether and isopropanol is disclosed comprising a fixed bed of serially connected stages containing zeolite Beta catalyst. A feedstream of propylene and water equivalents selected from the group consisting of water, isopropanol and diisopropyl ether is introduced into each stage at a rate sufficient to provide a mole ratio of water equivalents to propylene equivalents that increases in increments by stage from at least 0.1 in a first stage to at most 1.2 in a final stage. The feedstream is introduced at a temperature between 50.degree. and 450.degree. C., pressure between 700 and 24000 kPa, and weight hourly space velocity between 0.10 and 30, based on catalyst, whereby a single non-aqueous liquid phase is maintained in the fixed bed. An effluent product stream is recovered comprising diisopropyl ether, isopropanol and water from the final stage. Isopropanol is recycled to the first stage when the preferred product is diisopropyl ether. When the preferred product is isopropanol, diisopropyl ether and water are recycled to the first stage.