摘要:
The present invention provides straight forward methods for plasma etching a trench having rounded top corners, or rounded bottom corners, or both in a silicon substrate. A first method for creating a rounded top corner on the etched silicon trench comprises etching both an overlying silicon oxide layer and an upper portion of the silicon substrate during a “break-through” step which immediately precedes the step in which the silicon trench is etched. The plasma feed gas for the break-through step comprises carbon and fluorine. In this method, the photoresist layer used to pattern the etch stack is preferably not removed prior to the break-through etching step. Subsequent to the break-through step, a trench is etched to a desired depth in the silicon substrate using a different plasma feed gas composition. A second method for creating a rounded top corner on the etched silicon trench comprises formation of a built-up extension on the sidewall of an overlying patterned silicon nitride hard mask during etch (break-through) of a silicon oxide adhesion layer which lies between the hard mask and a silicone substrate. The built-up extension upon the silicon nitride sidewall acts as a sacrificial masking material during etch of the silicon trench, delaying etching of the silicon at the outer edges of the top of the trench. This permits completion of trench etching with delayed etching of the top corner of the trench and provides a more gentle rounding (increased radius) at the top corners of the trench. During the etching of the silicon trench to its final dimensions, it is desirable to round the bottom corners of the finished silicon trench. We have discovered that a more rounded bottom trench corner is obtained using a two-step silicon etch process where the second step of the process is carried out at a higher process chamber pressure than the first step.
摘要:
A surface light source apparatus (100) includes a main body (105) having a space, and a plurality of space division members (130) being disposed in the space so that the space division members (130) are extended in a first direction and arranged in a second direction spaced apart from one another to divide the space into a plurality of light emitting spaces (112). The space division members (130) include a plurality of connecting holes (132). At least two of the connecting holes (132) have different heights from one another with respect to a bottom surface of the main body (105) to have the light emitting spaces connected to one another through the connecting holes (132). The surface light source apparatus also includes a visible light emitting unit to generate a visible light in the light emitting spaces. Therefore, the brightness-uniformity of the surface light source apparatus and an image display quality of a display device are improved.
摘要:
A substrate processing apparatus has a chamber having a substrate transport to transport a substrate onto a substrate support in the chamber, a gas supply to provide a gas in the chamber, a gas energizer to energize the gas, and an exhaust to exhaust the gas. A detector is adapted to detect a first intensity of a first wavelength of a radiation emission from an energized gas in the chamber and generate a first signal in relation to the first intensity and to detect a second intensity of a second wavelength of the radiation emission and generate a second signal in relation to the second intensity. A controller receives the first and second signals from the detector, performs a mathematical operation on the first and second signals to determine a value related to a condition of the chamber, and treats the chamber in relation to the value by providing instructions to operate one or more of the substrate transport, substrate support, gas supply, gas energizer and gas exhaust.
摘要:
The present invention pertains to a method for depositing built-up structures on the surface of patterned masking material used for semiconductor device fabrication. Such built-up structures are useful in achieving critical dimensions in the fabricated device. The composition of the built-up structure to be fabricated is dependant upon the plasma etchants used during etching of underlying substrates and on the composition of the substrate material directly underlying the masking material. One preferred method of the present invention for depositing built-up structures upon a patterned mask surface comprises the following steps: (a) providing a patterned mask surface, wherein said patterned mask rests on an underlying substrate; and (b) depositing a polymeric built-up structure over at least a portion of said patterned mask surface using a plasma formed from a source gas comprising Cl2, a compound which comprises fluorine, and an inert gas which provides physical bombardment of surfaces contacted by said plasma.
摘要:
The method of present invention etches a layer of polysilicon formed on a substrate disposed within a substrate processing chamber. The method flows an etchant gas including sulfur hexafluoride, an oxygen source and a nitrogen source into the processing chamber and ignites a plasma from the etchant gas to etch the polysilicon formed over the substrate. In a preferred embodiment, the etchant gas consists essentially of SF6, molecular oxygen (O2) and molecular nitrogen (N2). In a more preferred embodiment the etchant gas includes a volume ratio of molecular oxygen to the sulfur hexafluoride of between 0.5:1 and 1:1 inclusive and a volume ratio of the sulfur hexafluoride to molecular nitrogen of between 1:1 and 4:1 inclusive. In an even more preferred embodiment, the volume ratio of O2 to sulfur hexafluoride is between 0.5:1 and 1:1 inclusive and the volume ratio of sulfur hexafluoride to N2 is between 1.5:1 and 2:1 inclusive.
摘要:
A method of etching polysilicon using a fluorinated gas chemistry to provide an etch rate in excess of 10,000 Å/min and a photoresist selectivity of better than 3:1. The method is accomplished using a combination of a fluorinated gas and a fluorocarbon gas, e.g., 50-60 sccm of SF6, 1-40 sccm of CHF3, and 40-50 sccm of O2 with a total chamber pressure of 4-60 mTorr. The power applied to the etch chemistry to produce an etching plasma is 400-1500 watts of inductive source power (at 13.56 MHz) via an inductively coupled antenna and 200-1500 watts (at 12.56 MHz) of cathode bias power applied via a cathode electrode within a wafer support pedestal. The pedestal supporting the wafer was maintained at 0-50 degrees C.
摘要:
There is provided an adaptive plasma source, which is arranged at an upper portion of a reaction chamber having a reaction space to form plasma and is supplied with RF (radio frequency) power from an external RF power source to form an electric field inside the reaction space. The adaptive plasma source includes a conductive bushing and at least two unit coils. The bushing is coupled to the RF power source and arranged at an upper central portion of the reaction chamber. The at least two unit coils are branched from the bushing and surround the bushing in a spiral shape and have the number of turns equal to a×(b/m), where a and b are positive integers and m is the number of the unit coils.
摘要:
In a method of manufacturing a surface light source, a plurality of partition walls is formed on a lower substrate. The partition walls generate a first stress in the lower substrate along a first direction. A reflective layer is formed on the lower substrate. The reflective layer generates a second stress in the lower substrate along a second direction. After forming a fluorescent layer on the reflective layer and beneath an upper substrate, the upper and lower substrates are sealed to form discharge spaces between the upper and lower substrates.