摘要:
A body fluid pressure sensor module according to the invention comprises a housing having a first end and a second end and enclosing a pressure sensor. The pressure sensor is electrically coupled to a plurality of electrical conductors extending into the housing through a feedthrough disposed within, and hermetically sealing, the first end of the housing. The housing defines a chamber disposed between the feedthrough and the second end of the housing. The chamber contains a material in communication with the pressure sensor, the material being capable of transmitting pressure variations to the pressure sensor. The plurality of electrical conductors have ends within the housing, and the pressure sensor is mounted on the end of at least one of the conductors. Also disclosed are medical leads incorporating the pressure sensor module, and methods for fabricating the modules. The pressure sensor module is compact, and particularly so where cable conductors are utilized and the sensor is directly mounted on at least one of the cable conductors. The compactness of a pressure sensor module pursuant to the invention facilitates its incorporation into a small diameter, flexible medical lead enhancing its placement within a patient's body, for example, within the left atrium of the heart.
摘要:
Disclosed herein is an implantable medical device including an antimicrobial layer. The antimicrobial layer may include a first distinct size of silver nanoparticles, a second distinct size of silver nanoparticles, and a third distinct size of silver nanoparticles. The antimicrobial layer extends over a surface of the implantable medical device, and, in some instances, the surface of the implantable medical device may serve as a substrate on which the antimicrobial layer is deposited.
摘要:
Disclosed herein is an implantable medical device including an antimicrobial layer. The antimicrobial layer may include a first distinct size of silver nanoparticles, a second distinct size of silver nanoparticles, and a third distinct size of silver nanoparticles. The antimicrobial layer extends over a surface of the implantable medical device, and, in some instances, the surface of the implantable medical device may serve as a substrate on which the antimicrobial layer is deposited.
摘要:
A coating on at least a portion of an implantable medical device includes a polymer and an agent that inhibits the formation of biofilms. The agent inhibiting the formation of a biofilm includes a quorum sensing inhibitor (QSI), a biofilm dispersing agent (BDA) or both. The agent may also be delivered via an actuator associated with the implantable medical device.
摘要:
A bioelectric battery may be used to power implantable devices. The bioelectric battery may have an anode electrode and a cathode electrode separated by an insulating member comprising a tube having a first end and a second end, wherein said anode is inserted into said first end of said tube and said cathode surrounds said tube such that the tube provides a support for the cathode electrode. The bioelectric battery may also have a membrane surrounding the cathode to reduce tissue encapsulation. Alternatively, an anode electrode, a cathode electrode surrounding the cathode electrode, a permeable membrane surrounding the cathode electrode. An electrolyte is disposed within the permeable membrane and a mesh surrounds the permeable membrane. In an alternative embodiment, a pacemaker housing acts as a cathode electrode for a bioelectric battery and an anode electrode is attached to the housing with an insulative adhesive.
摘要:
A bioelectric battery may be used to power implantable devices. The bioelectric battery may have an anode electrode and a cathode electrode separated by an insulating member comprising a tube having a first end and a second end, wherein said anode is inserted into said first end of said tube and said cathode surrounds said tube such that the tube provides a support for the cathode electrode. The bioelectric battery may also have a membrane surrounding the cathode to reduce tissue encapsulation. Alternatively, an anode electrode, a cathode electrode surrounding the cathode electrode, a permeable membrane surrounding the cathode electrode. An electrolyte is disposed within the permeable membrane and a mesh surrounds the permeable membrane. In an alternative embodiment, a pacemaker housing acts as a cathode electrode for a bioelectric battery and an anode electrode is attached to the housing with an insulative adhesive.
摘要:
A bioelectric battery may be used to power implantable devices. The bioelectric battery may have an anode electrode and a cathode electrode separated by an insulating member comprising a tube having a first end and a second end, wherein said anode is inserted into said first end of said tube and said cathode surrounds said tube such that the tube provides a support for the cathode electrode. The bioelectric battery may also have a membrane surrounding the cathode to reduce tissue encapsulation. Alternatively, an anode electrode, a cathode electrode surrounding the cathode electrode, a permeable membrane surrounding the cathode electrode. An electrolyte is disposed within the permeable membrane and a mesh surrounds the permeable membrane. In an alternative embodiment, a pacemaker housing acts as a cathode electrode for a bioelectric battery and an anode electrode is attached to the housing with an insulative adhesive.
摘要:
According to this technique of packaging a sensor device implantable in a living body so as to provide protection of the sensor device and to the living body itself, an electrical conductor of the sensor device is sealed in an insulating substrate extending between proximal and distal ends. The distal end of the electrical conductor is externally connected to an external sensor on the sensor device and the proximal end of the electrical conductor is externally connected to a distal end of a lead wire extending proximally to a pulse generator and these connections are embedded in an insulative sheath. The external sensor, substrate, and insulative sheath are encapsulated in a thin film of hermetic material without interference with the lead wire. In another embodiment, a layer of insulating material may underlie the hermetic material to encapsulate the external sensor and the substrate.
摘要:
A system for implanting an implantable medical device (IMD) within a patient may include a main handle assembly having proximal and distal ends, a device-connection control handle connected to the proximal end of the main handle assembly, an introducer connected to the distal end of the main handle assembly, and a connection tool extending from the introducer. The connection tool may include a device-engaging member configured to change at least one of shape or orientation to selectively connect to and disconnect from the IMD. The device-connection control handle may be operatively connected to the device-engaging member and the device-connection control handle may be configured to manipulate the device-engaging member between connected and disconnected states by changing the at least one of the shape or orientation.
摘要:
A leadless intra-cardiac medical device (LIMD) configured to be implanted entirely within a heart of a patient includes a housing configured to be securely attached to an interior wall portion of a chamber of the heart, and a stabilizing intra-cardiac (IC) device extension connected to the housing. The stabilizing IC device extension may include a stabilizer arm, and/or an appendage arm, or an elongated body or a loop member configured to be passively secured within the heart.