摘要:
The present invention comprises a distal rest pad for supporting a portion of a wafer seated on an end effector. In one embodiment, the rest pad includes a bottom support pad and an edge stop. Each element is mounted separately to the distal end of a support plate. The bottom support pad includes an inclined surface that transitions to a substantially horizontal surface at its distal end. The edge stop has a substantially vertical wafer contact surface that the peripheral edge of a wafer eventually contacts as the wafer is urged towards the distal rest pad. In another embodiment, the bottom support pad comprises an inclined surface. In yet another embodiment, the distal rest pad comprises a single structure. This distal rest pad includes a backstop portion and a bottom support separated by a particle collection groove. The bottom support may include an inclined lead-in surface that transitions into a flat contact surface or only comprise an inclined lead-in surface.
摘要:
A substrate support and transport system for substrates to be processed is provided. The system includes a container supporting a plurality of substrates in a substantially vertical orientation, where the container has an access door surrounded by a flange defined on a top surface. The system includes a conveying system supporting a bottom surface of the container opposing the top surface. The conveying system is configured to enable removal of the container from the conveying system to a processing tool while the plurality of substrates is in the substantially vertical orientation. The system further includes a receiving module for a processing tool configured to accept the container from the conveying system. The receiving module is configured to move the container in a two dimensional plane defined within the receiving module. A container holding the substrates in a substantially vertical orientation and a method for transporting and storing substrates is provided.
摘要:
The present invention comprises a conveyor for moving a semiconductor containers throughout a fabrication facility. In one embodiment, the conveyor comprises a plurality of individually controlled conveyor zones. Each conveyor zone includes a first belt, a second belt, a drive assembly for rotating the first belt and the second belt at substantially the same speed. The first belt and the second belt are driven at substantially the same speed and movably support the container's bottom plate as the container moves along the conveyor. In another embodiment, the conveyor includes sensors to determine, among other things, the position of the container.
摘要:
The present invention generally comprises a tool load device for transferring a container between a container transport system and a processing tool. The tool load device may service a single load port or multiple load ports. Regardless, the tool load device is preferably located between the load port of the processing tool and the section of the container transport system passing the processing tool. The tool load device provides an improved method of moving containers between a conventional load port and, for example, a conveyor. In another embodiment, the tool load device is coupled with an x-drive assembly that moves the tool load device along a path that is substantially parallel to the container transport system passing in front of the load port—allowing the tool load device to service multiple load ports.
摘要:
The present invention comprises a load port for providing access to an article that is stored in a container having a container door removably coupled to a container shell. The load port preferably loads/unloads a container directly from a container transport system. In one embodiment, the load port includes a plate having an opening, a container support plate, a drive assembly for moving the support plate vertically and a shroud to partially enclose the opening. The shroud, which may be affixed to the mounting plate, has an open top and bottom. The shroud contains a mechanism for retaining the container shell at a controllable height. During operation, a container is raised from the transport system into the shroud until the container shell is retained by the mechanism. After the container shell is uncoupled from the container door, the container support plate is lowered until the article is accessible through the opening. The container shell remains located at the controllable height. The container shell, in combination with the shroud, creates a mini-environment isolating the article from ambient conditions in the fabrication facility.
摘要:
The present invention is a wafer engine for transporting wafers. The wafer engine includes a linear drive for moving the wafer along an x axis, a rotational drive for rotating the wafer about a theta axis, a linear drive for moving the wafer along a z axis, and a linear drive for moving the wafer along a radial axis. The linear drive for moving the wafer along a z axis is offset from the rotational drive. When the rotational drive rotates about the theta axis, both the z axis and radial axis drives are also rotated about the theta axis. Preferably, the linear drive for moving the wafer along a radial axis is a dual or rapid swap slide body mechanism having an upper and lower end effector. The slide body mechanism preferably also has means to align the wafer and perform various inspection and marking procedures.
摘要:
The present invention is a wafer transfer system that transports individual wafers between chambers within an isolated environment. In one embodiment, a wafer is transported by a wafer shuttle that travel within a transport enclosure. The interior of the transport enclosure is isolated from the atmospheric conditions of the surrounding wafer fabrication facility. Thus, an individual wafer may be transported throughout the wafer fabrication facility without having to maintain a clean room environment for the entire facility. The wafer shuttle may be propelled by various technologies, such as, but not limited to, magnetic levitation or air bearings. The wafer shuttle may also transport more than one wafer simultaneously. The interior of the transport enclosure may also be under vacuum, gas-filled, or subject to filtered air.
摘要:
A variable lot size load port assembly includes a tool interface, a port door, an advance plate, and first and second latch keys. The tool interface extends generally in a vertical dimension and has an aperture. The port door has a closed position wherein the port door at least partially occludes the aperture. The advance plate is configured to support a front opening unified pod (FOUP) and translate between a retracted position and an advanced position. The first latch key is disposed on the port door at a first elevation configured to selectively engage a corresponding latch key receptacle of a FOUP having a first selected FOUP capacity and the second latch key is disposed on the port door at a second elevation configured to selectively engage a corresponding latch key receptacle of another FOUP having a second selected FOUP capacity.
摘要:
The present invention generally comprises an apparatus for transporting containers between a first transport system and a second transport system. In one embodiment, the first transport system comprises a ceiling-based conveyor and the second transport system comprises a floor-based conveyor. The present invention may further include storage shelves, preferably substantially horizontally aligned about a common vertical plane with a section of one of the transport systems. The transport system may be located either directly above the uppermost storage shelf or beneath the lowermost storage shelf in order to add storage capacity within the fab. A vertical module transports containers between the transport systems and the at least one storage shelf.
摘要:
A variable lot size load port assembly is described having a tool interface, a port door, a latch key, an advance plate, and an elevator. The tool interface extends generally in a vertical dimension and has an aperture. The port door has a closed position wherein the port door at least partially occludes the aperture. The latch key extends from the port door and is configured to mate with a latch key receptacle of a door of a front opening unified pod (FOUP). The advance plate is configured to support a front opening unified pod (FOUP) and translate between a retracted position and an advanced position. The elevator raises and lowers the advance plate to bring the latch key receptacle of the door of the FOUP into alignment with the latch key of the port door.