Abstract:
Systems and methods are disclosed for tracking physiological states and parameters for calorie estimation. A start of an exercise session associated with a user of a wearable computing device is determined. Heart rate data is measured for a first period of time. An onset heart rate value of the user is determined based on the measured heart rate data, the onset heart rate value associated with a lowest valid heart rate measured during the first period of time. A resting heart rate parameter (RHR) of a calorimetry model is associated with at least one of the onset heart rate value, a preset RHR, and an RHR based on user biometric data. Energy expenditure of the user during a second period of time is estimated based on the calorimetry model and a plurality of heart rate measurements obtained by the wearable computing device during the second period of time.
Abstract:
In one aspect, the present disclosure relates to a method including obtaining, by a heart rate sensor of a fitness tracking device, a heart rate measurement of a user of the fitness tracking device; obtaining, by at least one motion sensor, motion data of the user; analyzing, by the fitness tracking device, the motion data of the user to estimate a step rate of the user; estimating, by the fitness tracking device, a load associated with a physical activity of the user by comparing the heart rate measurement with the step rate of the user; and estimating, by the fitness tracking device, an energy expenditure rate of the user using the load and at least one of the heart rate measurement and the step rate.
Abstract:
The present disclosure relates to systems and methods of estimating energy expenditure of a user while swimming. A processor circuit of a user device can estimate a speed of the user based on a stroke rate and a stroke length. The processor circuit can estimate an efficiency of the user. The processor circuit can classify a swimming style of the user. The processor circuit can determine energy expenditure of the user based on the speed, the efficiency, and the style. The processor circuit can also detect glides of the user and adjust the energy expenditure.
Abstract:
The present disclosure relates to methods and systems of determining swimming metrics of a user during a swimming session. The method can include receiving, by a processor circuit of a user device, motion information from one or more motion sensors of the user device; determining, by the processor circuit using the motion information, a first set of rotational data of the user device, wherein the first set of rotational data is expressed in a first frame of reference; converting, by the processor circuit, the first set of rotational data into a second set of rotational data, wherein the second set of rotational data is expressed in a second frame of reference; determining, by the processor circuit, one or more swimming metrics of the user; and outputting the one or more swimming metrics.