Abstract:
Systems and processes are disclosed for operating a digital assistant in a media environment. In an exemplary embodiment, a user can interact with a digital assistant of a media device while content is displayed by the media device. In one approach, a plurality of exemplary natural language requests can be displayed in response to detecting a user input of a first input type. The plurality of exemplary natural language requests can be contextually-related to the displayed content. In another approach, a user request can be received in response to detecting a user input of a second input type. A task that at least partially satisfies the user request can be performed. The performed task can depend on the nature of the user request and the content being displayed by the media device. In particular, the user request can be satisfied while reducing disruption to user consumption of media content.
Abstract:
In some implementations, a mobile device transmit traffic information to a server for analysis. The traffic information includes movement information including detected stops and durations of detected stops. The traffic information is analyzed to detect traffic patterns that indicate locations of stop signs and/or stop lights. The traffic information is analyzed to determine durations of stops at stop signs and/or stop lights. The durations of stops is associated with a time of day and/or day of the week. In some implementations, navigational routes is determined based stop sign and/or stop light information, including the delays attributable to detected stop signs and/or stop lights.
Abstract:
Systems and processes are disclosed for operating a digital assistant in a media environment. In an exemplary embodiment, a user can interact with a digital assistant of a media device while content is displayed by the media device. In one approach, a plurality of exemplary natural language requests can be displayed in response to detecting a user input of a first input type. The plurality of exemplary natural language requests can be contextually-related to the displayed content. In another approach, a user request can be received in response to detecting a user input of a second input type. A task that at least partially satisfies the user request can be performed. The performed task can depend on the nature of the user request and the content being displayed by the media device. In particular, the user request can be satisfied while reducing disruption to user consumption of media content.
Abstract:
Systems and processes are disclosed for operating a digital assistant in a media environment. In an exemplary embodiment, a user can interact with a digital assistant of a media device while content is displayed by the media device. In one approach, a plurality of exemplary natural language requests can be displayed in response to detecting a user input of a first input type. The plurality of exemplary natural language requests can be contextually-related to the displayed content. In another approach, a user request can be received in response to detecting a user input of a second input type. A task that at least partially satisfies the user request can be performed. The performed task can depend on the nature of the user request and the content being displayed by the media device. In particular, the user request can be satisfied while reducing disruption to user consumption of media content.
Abstract:
Various examples are directed to an electronic device capable of touch input through a touch-sensitive surface and/or voice input through a microphone. In some examples, the electronic device may be used in an automobile. For example, some or all of the electronic device may be mounted in a dashboard for use while driving. The electronic device may provide informational content, entertainment content, navigation, and communication features in such a manner that user interaction may be minimized, thus providing a safe driving experience. This can be accomplished by performing tasks and presenting content automatically, without the need for user input, and by allowing user input through voice controls, touch screen controls, and/or physical controls mounted on the dashboard or steering wheel, among other possibilities.
Abstract:
In some implementations, a user can play a music track from a dynamically generated playlist. The user can provide input indicating that the user likes or dislikes the music track and the playlist can be adjusted based on the user input. In some implementations, information can be presented to the user so that the user can preview changes to the playlist before the changes are made to the playlist. In some implementations, a user can adjust playlist criteria (configuration) by adjusting specific music characteristics. In some implementations, a user can adjust playlist criteria by manipulating a list of representative music tracks. In some implementations, a user can compare the user's playlist to playlists of other users.
Abstract:
In some implementations, a user can play a music track from a dynamically generated playlist. The user can provide input indicating that the user likes or dislikes the music track and the playlist can be adjusted based on the user input. In some implementations, information can be presented to the user so that the user can preview changes to the playlist before the changes are made to the playlist. In some implementations, a user can adjust playlist criteria (configuration) by adjusting specific music characteristics. In some implementations, a user can adjust playlist criteria by manipulating a list of representative music tracks. In some implementations, a user can compare the user's playlist to playlists of other users.
Abstract:
A device displays a first user interface on a first display, including a plurality of objects and corresponding to a second user interface on a second display. While a first object is displayed as a selected object in the second user interface, the device: detects a first input requesting information about a second object; and in response to detecting the first input, displays information about the second object in the first user interface and maintains display of the first object as the selected object in the second user interface. After displaying the information, the device detects a second input selecting the second object. In response to detecting selection of the second input, the device: displays the second object as the selected object in the first user interface; and provides, to the second display, information that enables the second user interface to display the second object as the selected object.
Abstract:
Systems and processes are disclosed for operating a digital assistant in a media environment. In an exemplary embodiment, a user can interact with a digital assistant of a media device while content is displayed by the media device. In one approach, a plurality of exemplary natural language requests can be displayed in response to detecting a user input of a first input type. The plurality of exemplary natural language requests can be contextually-related to the displayed content. In another approach, a user request can be received in response to detecting a user input of a second input type. A task that at least partially satisfies the user request can be performed. The performed task can depend on the nature of the user request and the content being displayed by the media device. In particular, the user request can be satisfied while reducing disruption to user consumption of media content.
Abstract:
Systems and processes are disclosed for operating a digital assistant in a media environment. In an exemplary embodiment, a user can interact with a digital assistant of a media device while content is displayed by the media device. In one approach, a plurality of exemplary natural language requests can be displayed in response to detecting a user input of a first input type. The plurality of exemplary natural language requests can be contextually-related to the displayed content. In another approach, a user request can be received in response to detecting a user input of a second input type. A task that at least partially satisfies the user request can be performed. The performed task can depend on the nature of the user request and the content being displayed by the media device. In particular, the user request can be satisfied while reducing disruption to user consumption of media content.