Abstract:
An electronic device may have a display cover layer provided with an infrared-transparent antireflection coating. A pixel array may emit visible light through the cover layer and the coating. An infrared emitter may emit infrared light and an infrared sensor may receive infrared light through the coating and the cover layer. The coating may include a stack of thin-film interference layers. The stack may include alternating lower and higher refractive index layers. The layers may have thicknesses and materials that configure the coating to exhibit an infrared transmittance of greater than 94% from 920 nm to 960 nm and a photopic reflectance of less than 1.5%. The coating may reflect visible light to prevent displayed images from being obscured by visible reflections. At the same time, some photopic reflectance of the coating may be sacrificed to maximize infrared transmittance and accommodate operation by the infrared emitter and sensor.
Abstract:
An organic light-emitting diode display may have an array of pixels formed from a layer of thin-film circuitry. The thin-film circuitry may be formed on a glass layer that serves as an inner layer of encapsulation for the array of pixels formed from the thin-film circuitry. A thin-film encapsulation layer may overlap the array of pixels and may serve as an opposing outer layer of encapsulation for the array of pixels formed by the thin-film circuitry. An electronic device may have opposing front and rear faces. The display may be mounted in a housing on the front face. The housing may have a planar rear wall on the rear face. A display cover layer associated with the display may overlap the pixel array. A touch sensor and optical layers such as a circular polarizer layer and a compensation layer may be interposed between the display cover layer and the thin-film.
Abstract:
An organic light-emitting diode display may have an array of pixels formed from a layer of thin-film circuitry. The thin-film circuitry may be formed on a glass layer that serves as an inner layer of encapsulation for the array of pixels formed from the thin-film circuitry. A thin-film encapsulation layer may overlap the array of pixels and may serve as an opposing outer layer of encapsulation for the array of pixels formed by the thin-film circuitry. An electronic device may have opposing front and rear faces. The display may be mounted in a housing on the front face. The housing may have a planar rear wall on the rear face. A display cover layer associated with the display may overlap the pixel array. A touch sensor and optical layers such as a circular polarizer layer and a compensation layer may be interposed between the display cover layer and the thin-film.
Abstract:
An electronic device can include a three-dimensional glass feature. In one embodiment, the three-dimensional glass feature is a cavity formed on the inside portion of a cover glass of an electronic device.
Abstract:
Electronic devices may be provided with displays that have polarizers. A polarizer may be provided with an unpolarized strip. The unpolarized strip may extend across the width of the polarizer and may overlap a light-based component such as a camera that is located in an inactive border area of a display. The polarizer may have a polarizer layer formed form a polymer with a dichroic dye. A strip-shaped opening may be formed in the polarizer layer by cutting out a strip of the polarizer layer with a laser cutting tool or other equipment, a strip of unpolarized material may be formed in the polarizer layer using chemical bleaching, or light-based bleaching techniques may be used to form an unpolarized strip in the polarizer layer.
Abstract:
Electronic equipment with displays may be provided. A first display may be mounted in a first housing and a second display may be mounted in a second housing that is adjacent to the first housing. The first housing may rotate relative to the second housing about a hinge axis. The first housing may be a lid and the second housing may be a base housing that is coupled to the lid by a hinge. A first display may be mounted in the first housing and a second display may be mounted in the second housing. Polarizer layers and other optical layers in the displays may be configured to provide a viewer with the ability to view images on the displays while wearing vertically polarized sunglasses and to suppress reflections of light emitted by the first display off of the second display.
Abstract:
A head-mountable device can provide passive cooling that utilizes surfaces of an optical assembly to allow heat to be managed in a manner that does not detrimentally impact the visual information displayed to the user. Lenses can be coated with a transparent and thermally conductive material, such as silver nanowire. Such a thermal layer can provide superior thermal conductivity, transmittance, flexibility, flat transmission, low cost, and angular color stability. The thermal layer can passively manage heat by increasing the surface area across which heat can be efficiently dissipated.
Abstract:
An electronic device may have a display cover layer provided with an infrared-transparent antireflection coating. A pixel array may emit visible light through the cover layer and the coating. An infrared emitter may emit infrared light and an infrared sensor may receive infrared light through the coating and the cover layer. The coating may include a stack of thin-film interference layers. The stack may include alternating lower and higher refractive index layers. The layers may have thicknesses and materials that configure the coating to exhibit an infrared transmittance of greater than 94% from 920 nm to 960 nm and a photopic reflectance of less than 1.5%. The coating may reflect visible light to prevent displayed images from being obscured by visible reflections. At the same time, some photopic reflectance of the coating may be sacrificed to maximize infrared transmittance and accommodate operation by the infrared emitter and sensor.
Abstract:
Electronic equipment with displays may be provided. A first display may be mounted in a first housing and a second display may be mounted in a second housing that is adjacent to the first housing. The first housing may rotate relative to the second housing about a hinge axis. The first housing may be a lid and the second housing may be a base housing that is coupled to the lid by a hinge. A first display may be mounted in the first housing and a second display may be mounted in the second housing. Polarizer layers and other optical layers in the displays may be configured to provide a viewer with the ability to view images on the displays while wearing vertically polarized sunglasses and to suppress reflections of light emitted by the first display off of the second display.