Abstract:
Apparatus and methods for configuring wireless circuitry of a wireless device to optimize power consumption based on operating states of the wireless device are disclosed. When associating with or while associated with a multiple-input multiple-output (MIMO) capable wireless local area network (WLAN) access point (AP), the wireless device configures the wireless circuitry to use a MIMO mode that includes at least two spatial streams for communication with multiple radio frequency (RF) receive chains active, a single-input single-output (SISO) mode or a multiple-input single-output (MISO) mode that includes only one spatial stream and a single RF receive chain active, or a single-input multiple-output (SIMO) mode that includes only one spatial stream and multiple RF receive chains active, based on balancing application requirements for data throughput with power saving modes to conserve battery levels. MIMO modes can be used when an active application benefits from MIMO rates or when transferring large files.
Abstract:
Embodiments are disclosed for address changing schemes in a wireless communications system. Some embodiments include an access point (AP) that can establish two or more address profiles with a station (STA), establish a schedule for switching from a first address profile to a second address profile, where the first and second address profiles are of the two or more address profiles, and transmit a first data transmission using the first address profile. Some embodiments include switching from the first address profile to the second address profile based on the schedule, and transmitting a second data transmission using the second address profile. The schedule can be based on a randomized time synchronization function (TSF). The AP can establish a joint algorithm with the STA, and use the joint algorithm determine the first and the second address profiles as well as transition times for the schedule.
Abstract:
Apparatus and methods for configuring wireless circuitry of a wireless communication device associated with a wireless local area network (WLAN) access point (AP) to use a reduced power consumption mode are disclosed. While associated with a multiple-input multiple-output (MIMO) WLAN AP and operating in a MIMO mode that includes at least two spatial streams for communication with multiple radio frequency (RF) receive chains active, the wireless communication device transmits a message indicating a request to use a spatial multiplexing power save (SMPS) mode that supports only one spatial stream and requires only a single active RF receive chain. The wireless communication device monitors packets received from the WLAN AP after a guard interval following the request and only switches to the SMPS mode when all packets received after the guard interval use only one spatial stream.
Abstract:
Embodiments provide a technique for enabling a wireless device to operate in a power saving mode without completely cutting off the wireless device from receiving outside communications. The technique includes, at an access point (AP), generating traffic indication map (TIM) information that indicates whether downlink data directed to the wireless device is buffered at the AP. The AP precedes a beacon frame with at least one “lightweight” traffic indication map (TIM) frame that includes the TIM information, which is a subset of the information that is included in the beacon frame. The AP can be configured to transmit the TIM broadcast frame, the beacon frame, and any other frames that include the TIM information during a single transmit opportunity to reduce the number of instances where the wireless device is required to transition from an idle state to a listen state.
Abstract:
Embodiments are disclosed for traffic engineering in support of real-time applications. A user equipment (UE) can detect a real-time application running on the UE, assess a link health corresponding to the real-time application, and transmit a payload including the link health to a peer device via WiFi communications. To detect the real-time application, the UE can receive traffic symptoms or application indications, and monitor corresponding traffic flows. To assess the link health, the UE can receive link quality metrics of a link corresponding to the link health, and determine an intra basic service set (BSS) clear channel assessment (CCA) percentage. The UE can initiate a Rapport session with the peer device, activate a keep-alive timer, and transmit updated information to the peer device according to the keep-alive timer.
Abstract:
A device implementing a system for coexistence of collocated radios may include a first radio circuit configured to receive, from a collocated second radio circuit, a start indication for cellular activity associated with a radio resource control connection. The first radio circuit may be configured to, responsive to receiving the start indication, stop a wireless transmission capability. The first radio circuit may be configured to receive, from the collocated cellular circuit, an end indication for the cellular activity prior to the radio resource control connection being released. The first radio circuit may be configured to resume the wireless transmission capability in accordance with a reduced power level response to receiving the end indication.
Abstract:
The present disclosure describes a method for adaptive WiFi roaming, where an electronic device and an access point advertise their networking capability. The networking capability may be, for example, the capability to support at least one enterprise feature. Based on the advertisements transmitted by the electronic device, the access point can determine that the electronic device can support the at least one enterprise feature and may selectively enable the at least one enterprise feature. Additionally, based on advertisements transmitted by the access point, the electronic device can determine that the access point can support the at least one enterprise feature. Based on this mutual determination, the access point and electronic device may continue an association process based on the at least one enterprise feature.
Abstract:
The subject disclosure provides systems and methods for improved signal strength determination for wireless communication. A client device may determine a signal strength, corresponding to a network connection to an access point, by using one or more beacons received over a first channel having a first channel width and data received over a second channel having a second channel width.
Abstract:
The subject disclosure provides systems and methods for improved signal strength determination for wireless communication. A client device may determine a corrected signal strength, corresponding to a network connection to an access point, by applying a correction to a measured signal strength. The correction may be based on a channel width for the connection.
Abstract:
Embodiments are disclosed for address changing schemes for a multi-link device in a wireless communications system. Some embodiments include a privacy enhanced (PE) access point (AP) multi-link device (MLD) that includes one or more affiliated APs operating on different links. The PE AP MLD can generate a first randomized OTA MLD address based at least on the MLD address of the PE AP MLD for a first affiliated PE AP (PE AP1). The PE AP MLD can transmit a first data transmission using the first OTA MLD address where the first data transmission includes an encrypted aggregated MAC service data unit (A-MSDU) subframe that includes the MLD address. The PE AP MLD can correlate the MLD address of the PE AP MPL with multiple addresses comprising: the first OTA MLD, a unique MLD address, and a Media Access Control (MAC) service access point (SAP) MLD address.