Abstract:
The present disclosure generally relates to methods for processing of substrates, and more particularly relates to methods for forming a metal gapfill. In one implementation, the method includes forming a metal gapfill in an opening using a multi-step process. The multi-step process includes forming a first portion of the metal gapfill, performing a sputter process to form one or more layers on one or more side walls, and growing a second portion of the metal gapfill to fill the opening with the metal gapfill. The metal gapfill formed by the multi-step process is seamless, and the one or more layers formed on the one or more side walls seal any gaps or defects between the metal gapfill and the side walls. As a result, fluids utilized in subsequent processes do not diffuse through the metal gapfill.
Abstract:
Methods and apparatus for processing a substrate are provided herein. In some embodiments, a process chamber includes: a chamber body and a lid assembly defining a processing volume within the process chamber; a substrate support disposed within the processing volume to support a substrate; and a showerhead having a first surface including a plurality of gas distribution holes disposed opposite and parallel to the substrate support, wherein the showerhead is fabricated from aluminum and includes an aluminum oxide coating along the first surface, wherein the aluminum oxide coating has a thickness of about 0.0001 to about 0.002 inches. In some embodiments, the showerhead may further have at least one of a roughness of about 10 to about 300μ-in Ra, or an emissivity (ε) of about 0.20 to about 0.80. The process chamber may be a thermal atomic layer deposition (ALD) chamber.
Abstract:
Embodiments described herein relate to a thermal chlorine gas cleaning process. In one embodiment, a method for cleaning N-Metal film deposition in a processing chamber includes positioning a dummy substrate on a substrate support. The processing chamber is heated to at least about 50 degrees Celsius. The method further includes flowing chlorine gas into the processing chamber and evacuating chlorine gas from the processing chamber. In another embodiment, a method for cleaning titanium aluminide film deposition in a processing chamber includes heating the processing chamber to a temperature between about 70 about degrees Celsius and about 100 degrees Celsius, wherein the processing chamber and the substrate support include one or more fluid channels configured to heat or cool the processing chamber and the substrate support.