Abstract:
Embodiments of methods for etching a substrate include exposing the substrate to a first plasma formed from an inert gas; exposing the substrate to a second plasma formed from an oxygen-containing gas to form an oxide layer on a bottom and sides of a low aspect ratio feature and a high aspect ratio feature, wherein the oxide layer on the bottom of the low aspect ratio feature is thicker than on the bottom of the high aspect ratio feature; etching the oxide layer from the bottom of the low and high aspect ratio features with a third plasma to expose the bottom of the high aspect ratio feature while the bottom of the low aspect ratio feature remains covered; and exposing the substrate to a fourth plasma formed from a halogen-containing gas to etch the bottom of the low aspect ratio feature and the high aspect ratio feature.
Abstract:
In an embodiment, a method of processing a substrate includes introducing a first process gas or a mixture of the first process gas and a second process gas into an etch chamber; exposing the substrate to the first process gas or to the mixture of the first and second process gases, the substrate having halogen residue formed on an exposed surface, the substrate having high aspect ratio features; forming and maintaining a plasma of the first process gas or a plasma of the mixture of the first and second process gases in the etch chamber to remove the residue from the surface by applying a first source power; exposing the substrate to the second process gas; and forming and maintaining a plasma of the second process gas in the etch chamber to remove the residue from the surface by applying a second source power and a bias power
Abstract:
Examples of the disclosure generally relate to a component for use in a semiconductor process chamber includes a body having machined surfaces including a first surface and a second surface. The first surface is configured to interface with a support member of the semiconductor process chamber. The second surface is configured to face a processing region of the semiconductor process chamber. A treated area of the second surface includes relatively flatter peaks than an untreated area of the machined surfaces and exhibits an average roughness between 1 and 30 micro-inches.