Abstract:
In an embodiment, a method of processing a substrate includes introducing a first process gas or a mixture of the first process gas and a second process gas into an etch chamber; exposing the substrate to the first process gas or to the mixture of the first and second process gases, the substrate having halogen residue formed on an exposed surface, the substrate having high aspect ratio features; forming and maintaining a plasma of the first process gas or a plasma of the mixture of the first and second process gases in the etch chamber to remove the residue from the surface by applying a first source power; exposing the substrate to the second process gas; and forming and maintaining a plasma of the second process gas in the etch chamber to remove the residue from the surface by applying a second source power and a bias power
Abstract:
Embodiments of the present disclosure include methods and apparatuses utilized to reduce residual film layers from a substrate periphery region, such as an edge or bevel of the substrate. Contamination of the substrate bevel, backside and substrate periphery region may be reduced after a plasma process. In one embodiment, an edge ring includes a base circular ring having an inner surface defining a center opening formed thereon and an outer surface defining a perimeter of the base circular ring. The base circular ring includes an upper body and a lower portion connected to the upper body. A step is formed at the inner surface of the base circular ring and above a first upper surface of the upper body. The step defines a pocket above the first upper surface of the upper body. A plurality of raised features formed on the first upper surface of the base circular ring.
Abstract:
The present disclosure provides methods for via reveal etching process to form through-silicon vias (TSVs) in a substrate. In one embodiment, a method for performing a via reveal process to form through-silicon vias in a substrate includes providing a substrate having partial through-silicon vias formed from a first surface of the substrate into a processing chamber, wherein the partial through-silicon vias formed in the substrate are blind vias, supplying an etching gas mixture including at least a fluorine containing gas and a chlorine containing gas into the processing chamber, and preferentially removing a portion of the substrate from a second surface of the substrate to expose the through-silicon vias until a desired length of the through-silicon vias is exposed from the second surface of the substrate.