Abstract:
The present invention provides a rolled steel sheet, for press hardening, for which the chemical composition includes, with contents expressed by weight, 0.24%≦C≦0.38%, 0.40%≦Mn≦3%, 0.10%≦Si≦0.70%, 0.015%≦Al≦0.070%, 0%≦Cr≦2%, 0.25%≦Ni≦2%, 0.015%≦Ti≦0.10%, 0%≦Nb≦0.060%, 0.0005%≦B≦0.0040%, 0.003%≦N≦0.010%, 0.0001%≦S≦0.005%, 0.0001%≦P≦0.025%, it being understood that the titanium and nitrogen content satisfy: Ti/N>3.42, and that the carbon, manganese, chromium and silicon content satisfy: 2.6 C + Mn 5.3 + Cr 13 + Si 15 ≥ 1.1 % , with the chemical composition optionally including one or more of the following elements: 0.05%≦Mo≦0.65%, 0.001%≦W≦0.30%, 0.0005%≦Ca≦0.005%, with the remainder made up of iron and inevitable impurities coming from preparation. The sheet includes a nickel content Nisurf at any point of the steel near the surface of said sheet over a depth Δ, such that Nisurf>Ninom, where Ninom designates the nominal nickel content of the steel, and such that Nimax designates the maximum nickel content within Δ: ( Ni max + Ni nom ) 2 × ( Δ ) ≥ 0.6 and such that: ( Ni max + Ni nom ) Δ ≥ 0.01 , with the depth Δ expressed in microns and the Nimax and Ninom contents expressed in percentages by weight.
Abstract:
The present invention provides a cold-rolled and annealed Dual-Phase steel sheet having strength from 980 to 1100 MPa and a breaking elongation greater than 9%. The composition includes the contents being expressed by weight: 0.055%≦C≦0.095%, 2%≦Mn≦2.6%, 0.005%≦Si≦0.35%, S≦0.005%, P≦0.050%, 0.1≦Al≦0.3%, 0.05%≦Mo≦0.25%, 0.2%≦Cr≦0.5%, Cr+2Mo≦0.6%, Ni≦0.1%, 0.010≦Nb≦0.040%, 0.010≦Ti≦0.050%, 0.0005≦B≦0.0025%, and 0.002%≦N≦0.007%. The remainder of the composition includes iron and inevitable impurities resulting from the smelting. A manufacturing method is also provided.
Abstract:
The present invention provides a cold-rolled and annealed Dual-Phase steel sheet having a tensile strength from 980 to 1100 MPa. The composition includes the contents being expressed by weight: 0.055%≤C≤0.095%, 2%≤Mn≤2.6%, 0.005%≤Si≤0.35%, S≤0.005%, P≤0.050%, 0.1≤Al≤0.3%, 0.05%≤Mo≤0.25%, 0.2%≤Cr≤0.5%, Cr+2 Mo≤0.6%, Ni≤0.1%, 0.010≤Nb≤0.040%, 0.010≤Ti≤0.050%, 0.0005≤B≤0.0025%, and 0.002%≤N≤0.007%. The remainder of the composition includes iron and inevitable impurities resulting from the smelting. A microstructure of the steel sheet is 40 to 65% ferrite, 35 to 50% martensite and 0 to 10% bainite. A non-recrystallized ferrite fraction is less than or equal to 15%.
Abstract:
The present invention provides a rolled steel sheet, for press hardening, for which the chemical composition includes, with contents expressed by weight, 0.24%≦C≦0.38%, 0.40%≦Mn≦3%, 0.10%≦Si≦0.70%, 0.015%≦Al≦0.070%, 0%≦Cr≦2%, 0.25%≦Ni≦2%, 0.015%≦Ti≦0.10%, 0%≦Nb≦0.060%, 0.0005%≦B≦0.0040%, 0.003%≦N≦0.010%, 0.0001%≦S≦0.005%, 0.0001%≦P≦0.025%, it being understood that the titanium and nitrogen content satisfy: Ti/N>3.42, and that the carbon, manganese, chromium and silicon content satisfy: 2.6 C + Mn 5.3 + Cr 13 + Si 15 ≥ 1.1 % , with the chemical composition optionally including one or more of the following elements: 0.05%≦Mo≦0.65%, 0.001%≦W≦0.30%, 0.0005%≦Ca≦0.005%, with the remainder made up of iron and inevitable impurities coming from preparation. The sheet includes a nickel content Nisurf at any point of the steel near the surface of said sheet over a depth Δ, such that Nisurf>Ninom, where Ninom designates the nominal nickel content of the steel, and such that Nimax, designates the maximum nickel content within Δ: ( Ni ma x + Ni nom ) 2 × ( Δ ) ≥ 0.6 and such that: ( Ni max - Ni nom ) Δ ≥ 0.01 , with the depth Δ expressed in microns and the Nimax and Ninom contents expressed in percentages by weight.
Abstract:
The present invention provides fabrication methods for cold rolled, precoated and press hardened steel sheets, for which the chemical composition includes, with contents expressed by weight, 0.24%≤C≤0.38%, 0.40%≤Mn≤3%, 0.10%≤Si≤0.70%, 0.015%≤Al≤0.070%, 0%≤Cr≤2%, 0.25%≤Ni≤2%, 0.015%≤Ti≤0.10%, 0%≤Nb≤0.060%, 0.0005%≤B≤0.0040%, 0.003%≤N≤0.010%, 0.0001%≤S≤0.005%, 0.0001%≤P≤0.025%, it being understood that the titanium and nitrogen content satisfy: Ti/N>3.42, and that the carbon, manganese, chromium and silicon content satisfy: 2.6C+Mn/5.3+Cr/13+Si/15≥1.1%, with the chemical composition optionally including one or more of the following elements: 0.05%≤Mo≤0.65%, 0.001%≤W≤0.30%, 0.0005%≤Ca≤0.005%, with the remainder made up of iron and inevitable impurities coming from preparation.
Abstract:
The present invention provides a cold-rolled and annealed Dual-Phase steel sheet having strength from 980 to 1100 MPa and a breaking elongation greater than 9%. The composition includes the contents being expressed by weight: 0.055%≤C≤0.095%, 2%≤Mn≤2.6%, 0.005%≤Si≤0.35%, S≤0.005%, P≤0.050%, 0.1≤Al≤0.3%, 0.05%≤Mo≤0.25%, 0.2%≤Cr≤0.5%, Cr+2Mo≤0.6%, Ni≤0.1%, 0.010≤Nb≤0.040%, 0.010≤Ti≤0.050%, 0.0005≤B≤0.0025%, and 0.002%≤N≤0.007%. The remainder of the composition includes iron and inevitable impurities resulting from the smelting. A manufacturing method is also provided.
Abstract:
The present invention provides a rolled steel sheet, for press hardening, for which the chemical composition includes, with contents expressed by weight, 0.24%≦C≦0.38%, 0.40%≦Mn≦3%, 0.10%≦Si≦0.70%, 0.015%≦Al≦0.070%, 0%≦Cr≦2%, 0.25%≦Ni≦2%, 0.015%≦Ti≦0.10%, 0%≦Nb≦0.060%, 0.0005%≦B≦0.0040%, 0.003%≦N≦0.010%, 0.0001%≦S≦0.005%, 0.0001%≦P≦0.025%, it being understood that the titanium and nitrogen content satisfy: Ti/N>3.42, and that the carbon, manganese, chromium and silicon content satisfy: 2.6 C + Mn 5.3 + Cr 13 + Si 15 ≥ 1.1 % , with the chemical composition optionally including one or more of the following elements: 0.05%≦Mo≦0.65%, 0.001%≦W≦0.30%, 0.0005%≦Ca≦0.005%, with the remainder made up of iron and inevitable impurities coming from preparation. The sheet includes a nickel content Nisurf at any point of the steel near the surface of said sheet over a depth Δ, such that Nisurf>Ninom, where Ninom designates the nominal nickel content of the steel, and such that Nimax designates the maximum nickel content within Δ: ( Ni max + Ni nom ) 2 × ( Δ ) ≥ 0.6 and such that: ( Ni max - Ni nom ) Δ ≥ 0.01 , with the depth Δ expressed in microns and the Nimax and Ninom contents expressed in percentages by weight.