Abstract:
A hot-dip coated steel substrate coated with a layer of Sn directly topped by a zinc or an aluminum based coating is provided, the steel substrate having the following chemical composition in weight percent: 0.10≤C≤0.4%, 1.2≤Mn≤6.0%, 0.3≤Si≤2.5%, Al
Abstract:
A method of annealing of steel sheets is provided which includes a first step consisting in fully oxidizing the surface of such steel sheet thus creating a fully oxided surface layer, a second step consisting in selectively oxidizing elements other than iron of such steel, in an area extending under said fully oxided layer, thus creating a selectively oxided internal layer and a third step consisting in fully reducing said fully oxided surface layer.
Abstract:
A cold rolled and hot dip coated steel sheet presenting a tensile strength above 1000−50×Al MPa, a uniform elongation above 15% and a low density is provided. The steel includes, by weight percent: 0.1≤C≤0.5%, 3.5≤Mn≤10.0%, 0≤Al≤9.0%, Si≤5.0%, Ti≤0.2%, V≤0.2%, Nb≤0.2%, S≤0.004%, P≤0.025%, 0.5≤Si+Al≤9.0%, B≤0.0035, Cr≤1%, The balance being Fe and impurities and the microstructure containing 25% to 90% of ferrite, 10% to 50% of austenite, kappa precipitates lower than 5% and martensite lower than 25%. The steel is able to be coated using total oxidation.
Abstract:
A method for producing a metallic coated steel sheet is provided. The method includes continuously annealing a steel sheet in a continuous annealing furnace and hot dip coating the steel sheet.
Abstract:
This invention relates to a cold-rolled sheet that is annealed and pre-coated for the fabrication of press hardened parts, composed of a steel substrate for heat treatment with a carbon content C0 between 0.07% and 0.5%, whereby this content is expressed by weight, and a metal pre-coating on at least the two principal faces of the steel substrate, characterized in that the substrate comprises a decarburized area on the surface of each of the two principal faces, whereby the depth p50% of the decarburized area is between 6 and 30 micrometers, whereby p50% is the depth at which the carbon content is equal to 50% of the content C0, and in that the sheet does not contain a layer of iron oxide between the substrate and the metal pre-coating.
Abstract:
A hot-dip coated steel substrate coated with a layer of Sn directly topped by a zinc or an aluminum based coating is provided, the steel substrate having the following chemical composition in weight percent:
0.10≤C≤0.4%,
1.2≤Mn≤6.0%,
0.3≤Si≤2.5%,
Al≤2.0%,
and on a purely optional basis, one or more elements such as
Abstract:
A cold-rolled sheet is provided. The cold-rolled sheet includes a steel substrate with a carbon content C0 between 0.07% and 0.5%, expressed by weight, and a metal pre-coating on at least the two principal faces of the steel substrate. The substrate has a decarburized area on the surface of each of the two principal faces. The depth p50% of the decarburized area is between 6 and 30 micrometers, and p50% is the depth at which the carbon content is equal to 50% of the content C0. The sheet does not contain a layer of iron oxide between the substrate and the metal pre-coating.
Abstract:
A cold-rolled sheet is provided. The cold-rolled sheet is annealed and pre-coated for the fabrication of press hardened parts, composed of a steel substrate for heat treatment with a carbon content C0 between 0.07% and 0.5%, expressed by weight, and a metal pre-coating on at least the two principal faces of the steel substrate. The substrate comprises a decarburized area on the surface of each of the two principal faces. The depth p50% of the decarburized area is between 6 and 30 micrometers, and p50% is the depth at which the carbon content is equal to 50% of the content C0. The sheet does not contain a layer of iron oxide between the substrate and the metal pre-coating. Processes are also provided.