摘要:
A device made of single-crystal silicon having a first side, a second side which is situated opposite to the first side, and a third side which extends from the first side to the second side, the first side and the second side each extending in a 100 plane of the single-crystal silicon, the third side extending in a first area in a 111 plane of the single-crystal silicon. The third side extends in a second area in a 110 plane of the single-crystal silicon. Furthermore, a production method for producing a device made of single-crystal silicon is described.
摘要:
A device made of single-crystal silicon having a first side, a second side which is situated opposite to the first side, and a third side which extends from the first side to the second side, the first side and the second side each extending in a 100 plane of the single-crystal silicon, the third side extending in a first area in a 111 plane of the single-crystal silicon. The third side extends in a second area in a 110 plane of the single-crystal silicon. Furthermore, a production method for producing a device made of single-crystal silicon is described.
摘要:
A device made of single-crystal silicon having a first side, a second side which is situated opposite to the first side, and a third side which extends from the first side to the second side, the first side and the second side each extending in a 100 plane of the single-crystal silicon, the third side extending in a first area in a 111 plane of the single-crystal silicon. The third side extends in a second area in a 110 plane of the single-crystal silicon. Furthermore, a production method for producing a device made of single-crystal silicon is described.
摘要:
A device made of single-crystal silicon having a first side, a second side which is situated opposite to the first side, and a third side which extends from the first side to the second side, the first side and the second side each extending in a 100 plane of the single-crystal silicon, the third side extending in a first area in a 111 plane of the single-crystal silicon. The third side extends in a second area in a 110 plane of the single-crystal silicon. Furthermore, a production method for producing a device made of single-crystal silicon is described.
摘要:
A method for manufacturing a micromechanical component is proposed. In this context, at least one trench structure having a depth less than the substrate thickness is to be produced in a substrate. In addition, an insulating layer and a filler layer are produced or applied on a first side of the substrate. The filler layer comprises a filler material that substantially fills up the trench structure. A planar first side of the substrate is produced by way of a subsequent planarization within a plane of the filler layer or of the insulating layer or of the substrate. A further planarization of the second side of the substrate is then accomplished. A micromechanical component that is manufactured in accordance with the method is also described.
摘要:
A method for manufacturing a micromechanical component is proposed. In this context, at least one trench structure having a depth less than the substrate thickness is to be produced in a substrate. In addition, an insulating layer and a filler layer are produced or applied on a first side of the substrate. The filler layer comprises a filler material that substantially fills up the trench structure. A planar first side of the substrate is produced by way of a subsequent planarization within a plane of the filler layer or of the insulating layer or of the substrate. A further planarization of the second side of the substrate is then accomplished. A micromechanical component that is manufactured in accordance with the method is also described.
摘要:
A method for producing a micromechanical component is proposed, a trench structure being substantially completely filled up by a first filler layer, and a first mask layer being applied on the first filler layer, on which in turn a second filler layer and a second mask layer are applied. A micromechanical component is also proposed, the first filler layer filling up the trench structure of the micromechanical component and at the same time forming a movable sensor structure.
摘要:
A method for manufacturing a micromechanical component is proposed. In this context, at least one trench structure having a depth less than the substrate thickness is to be produced in a substrate. In addition, an insulating layer and a filler layer are produced or applied on a first side of the substrate. The filler layer comprises a filler material that substantially fills up the trench structure. A planar first side of the substrate is produced by way of a subsequent planarization within a plane of the filler layer or of the insulating layer or of the substrate. A further planarization of the second side of the substrate is then accomplished. A micromechanical component that is manufactured in accordance with the method is also described.
摘要:
A method for producing a micromechanical component is proposed, a trench structure being substantially completely filled up by a first filler layer, and a first mask layer being applied on the first filler layer, on which in turn a second filler layer and a second mask layer are applied. A micromechanical component is also proposed, the first filler layer filling up the trench structure of the micromechanical component and at the same time forming a movable sensor structure.
摘要:
An acceleration sensor having a mass which is movably supported outside its center of gravity, first electrodes on the mass and second electrodes located at a distance therefrom forming a capacitive sensor in order to determine a change in position of the mass as a function of time. At least one spring element which generates a restoring force when the mass is deflected from its neutral position is provided on the side of the mass facing the capacitive sensor. The mass may be obtained by being exposed from a material layer, and the mass is surrounded, at least at its side faces, by this material.