Abstract:
A modified gas turbine system is provided that adapts an advanced pressurized fluidized bed combustor cycle for use with existing combustion turbine technology. To accommodate current combustion turbine technology, the air extracted from the compressor discharge is limited, e.g. to about 20% of the total. The additional air required for the APFBC cycle is provided by an auxiliary source of compressed air. The compressor discharge air that is not extracted is used for combustion of the fuel gas produced by the carbonizer and also provides internal cooling as required by conventional combustion turbine design. A separate expander turbine is used to recover energy from the vitiated air from the PFBC. Energy from the vitiated air may further be recovered by directing the expander exhaust to an HRSG.
Abstract:
An integrated turbomachine plant is provided and includes a combustor a turbomachine operably connected to the combustor and including a compressor and a turbine expander, a pathway to flow compressed air from the compressor through the turbine expander to heat the compressed air, an additional pathway by which high temperature fluids output from the turbomachine are employed to heat the compressed air and an air separation unit operably connected to the pathway and configured to separate the heated compressed air into oxygen and oxygen-depleted air.
Abstract:
The present application thus provides an integrated gasification combined cycle system. The integrated gasification combined cycle system may include a water gas shift reactor system and a heat recovery steam generator. The water gas shift reactor system may include a recirculation system with a recirculation heat exchanger to heat a flow of syngas. The heat recovery steam generator may include a diverted water flow in communication with the recirculation heat exchanger.
Abstract:
An external fluid in a closed loop is used to cool hot gas path components of gas turbine. After cooling the turbine components, the heated external fluid is dumped either in the compressor discharge casing or in the one of the turbine's stages. Where the external fluid is nitrogen to be dumped in the turbine compressor's discharge casing, the nitrogen is compressed using diluent nitrogen compressors. Alternatively, where the external fluid is nitrogen to be dumped in one of the stages of the turbine, the nitrogen is not compressed at all. The turbine blade heat exchangers in the turbine stages through which the nitrogen passes can be connected in parallel or in series for cooling the hot gas path components in the turbine stages. The nitrogen can optionally be mixed with air or steam or not mixed at all.
Abstract:
A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.
Abstract:
A power generation system capable of eliminating NO components in the exhaust gas by using a 3-way catalyst, comprising a gas compressor to increase the pressure of ambient air fed to the system; a combustor capable of oxidizing a mixture of fuel and compressed air to generate an expanded, high temperature exhaust gas; a turbine that uses the force of the high temperature gas; an exhaust gas recycle (EGR) stream back to the combustor; a 3-way catalytic reactor downstream of the gas turbine engine outlet which treats the exhaust gas stream to remove substantially all of the NOx components; a heat recovery steam generator (HRSG); an EGR compressor feeding gas to the combustor and turbine; and an electrical generator.
Abstract:
A system and method for recovering heat from dirty gaseous fuel (syngas), wherein the pressure of clean fuel gas is elevated to a pressure higher than that of the dirty syngas and then the pressurized clean fuel gas is fed to a heat recovery unit for heat exchange with the dirty syngas. Consequently, in the event of a leak in the heat recovery unit, the flow is from the clean fuel side to the dirty syngas side, thereby avoiding the possibility of contamination of the clean fuel gas.
Abstract:
A gas turbine system that includes a compressor, a turbine component and a load, wherein fuel and compressor discharge bleed air are supplied to a combustor and gaseous products of combustion are introduced into the turbine component and subsequently exhausted to atmosphere. A compressor discharge bleed air circuit removes bleed air from the compressor and supplies one portion of the bleed air to the combustor and another portion of the compressor discharge bleed air to an exhaust stack of the turbine component in a single cycle system, or to a heat recovery steam generator in a combined cycle system. In both systems, the bleed air diverted from the combustor may be expanded in an air expander to reduce pressure upstream of the exhaust stack or heat recovery steam generator.
Abstract:
In a power generating plant which utilizes fuel gas for combustion at a predetermined pressure to drive a primary load, and where the fuel gas is supplied at a pressure higher than the predetermined pressure, an improvement is provided wherein a fuel gas expander is located downstream of a source of the fuel gas and upstream of a combustor for decreasing the pressure of the fuel gas, and wherein excess energy from the expander is used to drive a secondary load.
Abstract:
An integrated turbomachine oxygen plant includes a turbomachine and an air separation unit. One or more compressor pathways flow compressed air from a compressor through one or more of a combustor and a turbine expander to cool the combustor and/or the turbine expander. An air separation unit is operably connected to the one or more compressor pathways and is configured to separate the compressed air into oxygen and oxygen-depleted air. A method of air separation in an integrated turbomachine oxygen plant includes compressing a flow of air in a compressor of a turbomachine. The compressed flow of air is flowed through one or more of a combustor and a turbine expander of the turbomachine to cool the combustor and/or the turbine expander. The compressed flow of air is directed to an air separation unit and is separated into oxygen and oxygen-depleted air.