Abstract:
Systems and methods are provided for registering maps with images, involving segmentation of three-dimensional images and registration of images with an electro-anatomical map using physiological or functional information in the maps and the images, rather than using only location information. A typical application of the invention involves registration of an electro-anatomical map of the heart with a preacquired or real-time three-dimensional image. Features such as scar tissue in the heart, which typically exhibits lower voltage than healthy tissue in the electro-anatomical map, can be localized and accurately delineated on the three-dimensional image and map.
Abstract:
A computer-implemented method for image registration includes accepting a three-dimensional (3-D) image of an organ. The image includes a first plurality of image points with respective image coordinates. A map defining a distribution of values of a physiological parameter over the organ is accepted. The map includes a second plurality of map points with respective map coordinates. Confidence levels are associated with one or more of the map coordinates and image coordinates. Weights are assigned to at least some of the map points and image points responsively to the confidence levels of the respective map coordinates and image coordinates. The 3-D image is fitted with the map by calculating a geometrical transformation between the map coordinates and the image coordinates based on the weights.
Abstract:
A computer-implemented method for image registration includes accepting a three-dimensional (3-D) image of an organ. The image includes a first plurality of image points with respective image coordinates. A map defining a distribution of values of a physiological parameter over the organ is accepted. The map includes a second plurality of map points with respective map coordinates. Confidence levels are associated with one or more of the map coordinates and image coordinates. Weights are assigned to at least some of the map points and image points responsively to the confidence levels of the respective map coordinates and image coordinates. The 3-D image is fitted with the map by calculating a geometrical transformation between the map coordinates and the image coordinates based on the weights.
Abstract:
A method and a device for obtaining a volume data set of a mobile tissue or organ of a patient by a C-arm X-ray device are provided. An electromagnetic sensor of a position detection system is arranged indirectly on the tissue or organ. The X-ray device obtains a plurality of X-ray projections from the tissue or organ from various projection directions. A first method consists of reconstructing a volume data set from the X-ray projections, in which the electromagnetic sensor adopts a position characterizing a displacement phase of the tissue or organ. A second method consists of reconstructing a volume data set from the X-ray projections captured when the electromagnetic sensor was located in a position characterizing a displacement phase of the tissue or organ. A third method does not capture an X-ray projection for the reconstruction if the electromagnetic sensor is located in a position characterizing a displacement phase.
Abstract:
A method for imaging includes receiving a first three-dimensional (3D) image of a vicinity of an organ within a body of a subject and creating a geometrical model of a tubular structure in the first 3D image in the vicinity of the organ. An invasive probe is inserted into the organ, and a second 3D image containing the organ is captured using the invasive probe. One or more points are located on a surface of the tubular structure using the invasive probe, and the second 3D image is registered with the first 3D image by matching the one or more points to the geometrical model.
Abstract:
A method for imaging includes receiving a first three-dimensional (3D) image of a vicinity of an organ within a body of a subject and creating a geometrical model of a tubular structure in the first 3D image in the vicinity of the organ. An invasive probe is inserted into the organ, and a second 3D image containing the organ is captured using the invasive probe. One or more points are located on a surface of the tubular structure using the invasive probe, and the second 3D image is registered with the first 3D image by matching the one or more points to the geometrical model.
Abstract:
The invention relates to a device and to a method for visual assistance during the electrophysiological use of a catheter in the heart, enabling electroanatomic 3D mapping data relating to an area of the heart to be treated to be visualised during the use of the catheter. Before the catheter is used, 3D image data of a body region containing the area to be treated is detected by means of a method for tomographic 3D imaging. The area to be treated or significant parts thereof are extracted from said 3D image data, in order to obtain selected 3D image data. The electroanatomic 3D mapping data and the selected 3D image data obtained are then classed in terms of position and dimension, and are adjacently visualised, for example, during the catheter ablation. The inventive method and associated device enable the orientation of the operator to be improved during the use of a catheter in the heart.
Abstract:
The invention relates to a device and to a method for visual assistance during the electrophysiological use of a catheter in the heart, enabling electroanatomic 3D mapping data relating to an area of the heart to be treated to be visualized during the use of the catheter. Before the catheter is used, 3D image data of a body region containing the area to be treated is detected by means of a method for tomographic 3D imaging. The area to be treated or significant parts thereof are extracted from said 3D image data, in order to obtain selected 3D image data. The electroanatomic 3D mapping data and the selected 3D image data obtained are then classed in terms of position and dimension, and are adjacently visualized, for example, during the catheter ablation. The inventive method and associated device enable the orientation of the operator to be improved during the use of a catheter in the heart.
Abstract:
The invention relates to a method and a device for visually supporting an electrophysiology catheter application in the heart, whereby electroanatomical 3D mapping data of an area of the heart to be treated which are provided during performance of the catheter application are visualized. Before the catheter application is carried out, 3D image data of the area to be treated are recorded by means of a tomographical 3D imaging method, a 3D surface profile of objects in the area to be treated is extracted from the 3D image data by segmentation and the electroanatomical 3D mapping data provided and the 3D images representing the 3D surface profile are associated with each other in the correct position and dimension relative each other and e.g. visualized in an superimposed manner during the catheter application. The present method and the corresponding device allow for an improved orientation of the user who carries out an electrophysiology catheter application in the heart.
Abstract:
A method and a device for obtaining a volume data set of a mobile tissue or organ of a patient by a C-arm X-ray device are provided. An electromagnetic sensor of a position detection system is arranged indirectly on the tissue or organ. The X-ray device obtains a plurality of X-ray projections from the tissue or organ from various projection directions. A first method consists of reconstructing a volume data set from the X-ray projections, in which the electromagnetic sensor adopts a position characterizing a displacement phase of the tissue or organ. A second method consists of reconstructing a volume data set from the X-ray projections captured when the electromagnetic sensor was located in a position characterizing a displacement phase of the tissue or organ. A third method does not capture an X-ray projection for the reconstruction if the electromagnetic sensor is located in a position characterizing a displacement phase.