摘要:
A cell of a fuel cell includes a membrane electrode assembly, and metal first and second separators which sandwich the membrane electrode assembly to form gas flow paths disposed on each side of the membrane electrode assembly. A back surface of the first separator and a back surface of the second separator, the first separator and the second separator being included in adjacent cells, are in contact with each other, thereby forming a temperature-control medium flow path between the first separator and the second separator. In the first separator and the second separator, corrosion-resistant coating layers are provided only on reaction-side surfaces of the first separator and the second separator, the reaction-side surfaces facing the membrane electrode assembly, and portions where the back surface of the first separator is in contact with the back surface of the second separator are joined by welded portions.
摘要:
A cell of a fuel cell includes a membrane electrode assembly, and metal first and second separators which sandwich the membrane electrode assembly to form gas flow paths disposed on each side of the membrane electrode assembly. A back surface of the first separator and a back surface of the second separator, the first separator and the second separator being included in adjacent cells, are in contact with each other, thereby forming a temperature-control medium flow path between the first separator and the second separator. In the first separator and the second separator, corrosion-resistant coating layers are provided only on reaction-side surfaces of the first separator and the second separator, the reaction-side surfaces facing the membrane electrode assembly, and portions where the back surface of the first separator is in contact with the back surface of the second separator are joined by welded portions.
摘要:
A fuel cell stack includes a membrane electrode assembly including an electrolyte membrane and electrode catalyst layers sandwiching the electrolyte membrane; metal separators that define gas channels, the metal separators being respectively disposed at both surfaces of the membrane electrode assembly; a current collector from which electromotive force is derived, the current collector being in contact with at least one of the metal separators; and joining parts that join the metal separator to the current collector at portions where the metal separator contacts the current collector.
摘要:
A fuel cell stack includes a membrane electrode assembly including an electrolyte membrane and electrode catalyst layers sandwiching the electrolyte membrane; metal separators that define gas channels, the metal separators being respectively disposed at both surfaces of the membrane electrode assembly; a current collector from which electromotive force is derived, the current collector being in contact with at least one of the metal separators; and joining parts that join the metal separator to the current collector at portions where the metal separator contacts the current collector.
摘要:
A fuel cell stack and method of manufacturing a fuel cell stack having a highly anti-corrosive property. The fuel cell stack includes a plurality of cells constructed by interposing an electrolyte membrane electrode assembly between the first and second separators. The first and second separators define gas passages on from both sides of the electrolyte membrane electrode assembly, and a gas manifold is in fluid communication with the gas flow passages through the plurality of stacked cells. Manifold openings for defining the gas manifold are formed in the first and second separators, and the opening areas of the manifold openings are differently sized. The manifold opening inner peripheral end of the first separator has a larger opening area, and is welded to the second separator to form a manifold welding portion.
摘要:
A fuel cell stack and method of manufacturing a fuel cell stack having a highly anti-corrosive property. The fuel cell stack includes a plurality of cells constructed by interposing an electrolyte membrane electrode assembly between the first and second separators. The first and second separators define gas passages on from both sides of the electrolyte membrane electrode assembly, and a gas manifold is in fluid communication with the gas flow passages through the plurality of stacked cells. Manifold openings for defining the gas manifold are formed in the first and second separators, and the opening areas of the manifold openings are differently sized. The manifold opening inner peripheral end of the first separator has a larger opening area, and is welded to the second separator to form a manifold welding portion.
摘要:
A bipolar battery includes: a power generation element formed by stacking a plurality of bipolar electrodes, in which an electrode layer is formed on a front and a rear of a collector, via an electrolyte layer; an elastic metal portion provided in contact with the power generation element so as to contact the power generation element in point or line contact when no external force is exerted thereon and contact the power generation element in surface contact when external force is exerted thereon; and an outer covering material provided to accommodate the power generation element and the elastic metal portion, an internal air pressure of which is set to be lower than an atmospheric pressure such that the elastic metal portion is caused to contact the power generation element in surface contact by a pressure difference between the internal air pressure and the atmospheric pressure.
摘要:
An electrode structure includes a substrate, an electrode active material layer formed on the substrate and divided into a plurality of portions on a side of a surface thereof, and a high resistance member having an electric resistance higher than that of an electrolyte. The high resistance member is formed on at least a part of a parting portion formed between the divided portions of the electrode active material layer. A method for producing an electrode structure, and a bipolar battery using the electrode structure are also disclosed.
摘要:
An anode (11a) and a cathode (11b) are provided on either side of an electrolyte membrane (11). A first separator (2) is disposed so as to face the anode (11a), and a second separator (3) is disposed so as to face the cathode (11b). A first sealing member (12) is disposed between the electrolyte membrane (11) and the first separator (2), and a second sealing member (13) is disposed between the electrolyte membrane (11) and the second separator (3). The cross-sectional shape or rubber hardness of the sealing members (12, 13) is varied according to a deformation amount generated in the electrolyte membrane (11) by a sealing reactive force. More specifically, in a site where the deformation amount of the electrolyte membrane (11) is large, either the contact area between the sealing member (12) and the electrolyte membrane (11) is increased, or the rubber hardness of the sealing member (12) is reduced. In so doing, deformation of the electrolyte membrane (11) caused by the sealing reactive force is suppressed, and the sealing performance of a fuel cell (10) is improved.
摘要:
The present invention is intended to provide a method of producing a sealing structure of a bipolar battery capable of improving the sealing capability by means of solidifying the joint between a resin collector comprising a thermosetting resin before the setting reaction and a sealing layer, a method of producing the bipolar battery, and the sealing structure of the bipolar battery and the bipolar battery. The method of producing the sealing structure of the bipolar battery comprises s step of producing the sealing assembly 80 by joining the first sealing layer 81 consisting of thermosetting resin before the thermosetting reaction with the second sealing layer 82 consisting of the thermoplastic resin, and a step of producing the collector assembly 90 formed by sealing the contact area of the sealing assembly and the resin collector 60 by joining the sealing assembly with the thermosetting resin after the thermosetting reaction.