摘要:
A variable resistance circuit comprises a resistance circuit including a plurality of resistors serially connected, and a bypass circuit connected in parallel with the resistance circuit for bypassing one or more resistors selected from the plurality of resistors. The bypass circuit includes a plurality of transistors selectively turned on or off. The variable resistance value is determined by a combined resistance value of a parasitic resistance of one or more transistors being turned on and one or more resistors being bypassed as well as a combined resistance value of one or more resistors being not bypassed. The gate widths of the plurality of transistors are so set that the variable resistance value varies approximately in steps of a predetermined value. Various resistance values can be set in high precision by selectively turning on or off the plurality of transistors.
摘要:
Eight resistors having resistance values of R×2i (i=0 to 7) (&OHgr;) are serially connected while eight switches exhibiting parasitic resistance values of r×2i (&OHgr;) in ON states are connected in parallel with the resistors respectively, for changing a resistance value by turning on/off the switches. The resistors are connected between an inversion input terminal of an operational amplifier and a terminal, and a non-inversion input terminal receives a prescribed reference voltage. Between the inversion input terminal and an output terminal of the operational amplifier, a resistor and a switch of a variable resistance circuit forming a negative feedback loop are connected to the output terminal while another resistor and another switch are connected to the inversion input terminal. In the variable resistance circuit, the resistance values of the resistors are successively increased from the side of the terminal, so that the resistor connected to the inversion input terminal has the maximum resistance value. Thus, only a single node is present ahead of the last resistor while a parasitic capacitance is minimized, whereby the frequency characteristic of an operational amplification circuit can be improved.
摘要:
A comparator converts an input analog RF signal to a digital signal and inputs the digital signal in a charge pump circuit. The charge pump circuit controls charging/discharging of an integration capacitor in response to the output level of the digital signal output from the comparator. The charging quantity of the integration capacitor is used as a reference voltage of an RF amplifier, and a center voltage level of the analog RF signal output from the RF amplifier is adjusted in response to an average dc level of the digital signal. Thus, it follows that a slice level of a signal reproducing circuit is properly controlled.
摘要:
Eight resistors having resistance values of R×2i (i=0 to 7) (&OHgr;) are serially connected while eight switches exhibiting parasitic resistance values of r×2i (&OHgr;) in ON states are connected in parallel with the resistors respectively, for changing a resistance value by turning on/off the switches. The resistors are connected between an inversion input terminal of an operational amplifier and a terminal, and a non-inversion input terminal receives a prescribed reference voltage. Between the inversion input terminal and an output terminal of the operational amplifier, a resistor and a switch of a variable resistance circuit forming a negative feedback loop are connected to the output terminal while another resistor and another switch are connected to the inversion input terminal. In the variable resistance circuit, the resistance values of the resistors are successively increased from the side of the terminal, so that the resistor connected to the inversion input terminal has the maximum resistance value. Thus, only a single node is present ahead of the last resistor while a parasitic capacitance is minimized, whereby the frequency characteristic of an operational amplification circuit can be improved.
摘要:
A first bias voltage generating circuit which applies a bias voltage to an amplifier circuit of an AD converter has a driving unit and a control unit. The driving unit includes a first bias circuit and a second bias circuit as a plurality of bias circuits which are connected in parallel and have different current driving capabilities. The first bias circuit and the second bias circuit each include a CMOS transistor which is connected directly between a power supply potential and a ground potential, and a switching element which interrupts a feedthrough current. The drains of the CMOS transistors output the bias voltage. The control unit turns on both or either one of the first bias circuit and the second bias circuit, thereby controlling the current driving capability of the entire driving unit.
摘要:
A first analog-digital converter circuit in a preceding stage converts an input analog signal into a digital value and retrieves the higher 4 bits. A second analog-digital converter circuit in a subsequent stage converts an input analog signal into a digital value and retrieves 3 bits including the 5th through 6th highest bits and a redundant bit, 3 bits including the 7th through 8th highest bits and a redundant bit, and 3 bits including the 9th through 10th highest bits and a redundant bit. Thus, the number of bits produced by conversion by the second analog-digital converter circuit in the subsequent stage of a cyclic type is configured to be smaller than the number of bits produced by conversion by the first analog-digital converter circuit in the preceding stage.
摘要:
A cyclic AD converter having a conversion processing speed or conversion accuracy designed no higher than necessary. In the AD converter, an input analog signal is held by a sample-and-hold circuit, and converted into a digital value by an AD conversion circuit. A DA conversion circuit converts the digital value output from the AD conversion circuit into an analog value. A subtractor circuit outputs the difference between the analog value output from the AD conversion circuit and the analog value held in the sample-and-hold circuit. An amplifier circuit amplifies the output of the subtractor circuit, and feeds back the resultant to the sample-and-hold circuit and the AD conversion circuit. In the course of this feedback-based cyclic processing, an amplification control circuit changes the gain of the amplifier circuit in accordance with the progress of the circulation.
摘要:
A first amplifier circuit amplifies an input signal by a factor of α. A first AD converter circuit is configured at an LSB voltage of VA and converts an input analog signal into a digital value of arbitrary N1 bits. A first DA converter circuit converts the digital value output from the first AD converter circuit into an analog signal. A subtracter circuit subtracts an output of the first DA converter circuit from an output of the first subtracter circuit. A second amplifier circuit amplifies an output of the subtracter circuit by a factor of β. A second AD converter is configured at an LSB voltage of VB and converts an input analog signal into a digital value of arbitrary N2 bits. In this circuit, the relation VA*α*β=VB*2N2 holds.
摘要:
A need exists to provide an AD converter which is well balanced between an increase in processing speed and a decrease in circuit area. The AD converter performs an analog-to-digital conversion separately in four steps, while performing pipelined processing on an AD conversion of the first stage by a first AD conversion circuit and AD conversions of the second to fourth steps by a second AD conversion circuit. A DA conversion circuit, a subtractor circuit, and an amplifier circuit are utilized in a DA conversion, subtraction, and amplification in the first step as well as in DA conversions, subtractions, and amplifications in the second to fourth steps, thus shared in all the steps.
摘要:
A first amplifier circuit samples and holds an input analog signal and outputs the same to a subtracting circuit. An AD converter circuit converts the input analog signal into a digital value so as to retrieve a predetermined number of bits. A DA converter circuit converts the digital value derived from conversion by the AD converter circuit into an analog value. A subtracter circuit subtracts an output analog signal from the DA converter circuit from the analog signal input via a first switch or the first amplifier circuit. A second amplifier circuit amplifies an output analog signal from the subtracter circuit by a gain of 2 and outputs the amplified signal. An input switching circuit controls the order of inputs, i.e. the input analog signal and a reference voltage, to voltage comparison elements constituting the Ad converter circuit.